Cargando…
Electrophilic Activation of [1.1.1]Propellane for the Synthesis of Nitrogen‐Substituted Bicyclo[1.1.1]pentanes
Strategies commonly used for the synthesis of functionalised bicyclo[1.1.1]pentanes (BCP) rely on the reaction of [1.1.1]propellane with anionic or radical intermediates. In contrast, electrophilic activation has remained a considerable challenge due to the facile decomposition of BCP cations, which...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299141/ https://www.ncbi.nlm.nih.gov/pubmed/34705316 http://dx.doi.org/10.1002/anie.202111291 |
Sumario: | Strategies commonly used for the synthesis of functionalised bicyclo[1.1.1]pentanes (BCP) rely on the reaction of [1.1.1]propellane with anionic or radical intermediates. In contrast, electrophilic activation has remained a considerable challenge due to the facile decomposition of BCP cations, which has severely limited the applications of this strategy. Herein, we report the electrophilic activation of [1.1.1]propellane in a halogen bond complex, which enables its reaction with electron‐neutral nucleophiles such as anilines and azoles to give nitrogen‐substituted BCPs that are prominent motifs in drug discovery. A detailed computational analysis indicates that the key halogen bonding interaction promotes nucleophilic attack without sacrificing cage stabilisation. Overall, our work rehabilitates electrophilic activation of [1.1.1]propellane as a valuable strategy for accessing functionalised BCPs. |
---|