Cargando…
Steric Repulsion Induced Conformational Switch in Supramolecular Structures
Inspired by the rigidified architecture of ‘picket‐fence’ systems, we propose a strategy utilizing strain to impose intramolecular tension in already peripherally overcrowded structures leading to selective atropisomeric conversion. Employing this approach, tuneable shape‐persistent porphyrin confor...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299809/ https://www.ncbi.nlm.nih.gov/pubmed/34792217 http://dx.doi.org/10.1002/chem.202103879 |
_version_ | 1784751062226305024 |
---|---|
author | Norvaiša, Karolis Maguire, Sophie Donohoe, Claire O'Brien, John E. Twamley, Brendan Gomes‐da‐Silva, Ligia C. Senge, Mathias O. |
author_facet | Norvaiša, Karolis Maguire, Sophie Donohoe, Claire O'Brien, John E. Twamley, Brendan Gomes‐da‐Silva, Ligia C. Senge, Mathias O. |
author_sort | Norvaiša, Karolis |
collection | PubMed |
description | Inspired by the rigidified architecture of ‘picket‐fence’ systems, we propose a strategy utilizing strain to impose intramolecular tension in already peripherally overcrowded structures leading to selective atropisomeric conversion. Employing this approach, tuneable shape‐persistent porphyrin conformations were acquired exhibiting distinctive supramolecular nanostructures based on the orientation of the peripheral groups. The intrinsic assemblies driven by non‐covalent bonding interactions form supramolecular polymers while encapsulating small molecules in parallel channels or solvent‐accessible voids. The developed molecular strain engineering methodologies combined with synthetic approaches have allowed the introduction of the pivalate units creating a highly strained molecular skeleton. Changes in the absorption spectrum indicated the presence of severe steric repulsions between the peripheral groups which were confirmed by single crystal X‐ray analysis. To release the steric strain introduced by the peripheral units, thermal equilibration strategies were used to selectively convert the most abundant atropisomer to the desirable minor one. |
format | Online Article Text |
id | pubmed-9299809 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92998092022-07-21 Steric Repulsion Induced Conformational Switch in Supramolecular Structures Norvaiša, Karolis Maguire, Sophie Donohoe, Claire O'Brien, John E. Twamley, Brendan Gomes‐da‐Silva, Ligia C. Senge, Mathias O. Chemistry Research Articles Inspired by the rigidified architecture of ‘picket‐fence’ systems, we propose a strategy utilizing strain to impose intramolecular tension in already peripherally overcrowded structures leading to selective atropisomeric conversion. Employing this approach, tuneable shape‐persistent porphyrin conformations were acquired exhibiting distinctive supramolecular nanostructures based on the orientation of the peripheral groups. The intrinsic assemblies driven by non‐covalent bonding interactions form supramolecular polymers while encapsulating small molecules in parallel channels or solvent‐accessible voids. The developed molecular strain engineering methodologies combined with synthetic approaches have allowed the introduction of the pivalate units creating a highly strained molecular skeleton. Changes in the absorption spectrum indicated the presence of severe steric repulsions between the peripheral groups which were confirmed by single crystal X‐ray analysis. To release the steric strain introduced by the peripheral units, thermal equilibration strategies were used to selectively convert the most abundant atropisomer to the desirable minor one. John Wiley and Sons Inc. 2021-12-02 2022-01-19 /pmc/articles/PMC9299809/ /pubmed/34792217 http://dx.doi.org/10.1002/chem.202103879 Text en © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Norvaiša, Karolis Maguire, Sophie Donohoe, Claire O'Brien, John E. Twamley, Brendan Gomes‐da‐Silva, Ligia C. Senge, Mathias O. Steric Repulsion Induced Conformational Switch in Supramolecular Structures |
title | Steric Repulsion Induced Conformational Switch in Supramolecular Structures |
title_full | Steric Repulsion Induced Conformational Switch in Supramolecular Structures |
title_fullStr | Steric Repulsion Induced Conformational Switch in Supramolecular Structures |
title_full_unstemmed | Steric Repulsion Induced Conformational Switch in Supramolecular Structures |
title_short | Steric Repulsion Induced Conformational Switch in Supramolecular Structures |
title_sort | steric repulsion induced conformational switch in supramolecular structures |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299809/ https://www.ncbi.nlm.nih.gov/pubmed/34792217 http://dx.doi.org/10.1002/chem.202103879 |
work_keys_str_mv | AT norvaisakarolis stericrepulsioninducedconformationalswitchinsupramolecularstructures AT maguiresophie stericrepulsioninducedconformationalswitchinsupramolecularstructures AT donohoeclaire stericrepulsioninducedconformationalswitchinsupramolecularstructures AT obrienjohne stericrepulsioninducedconformationalswitchinsupramolecularstructures AT twamleybrendan stericrepulsioninducedconformationalswitchinsupramolecularstructures AT gomesdasilvaligiac stericrepulsioninducedconformationalswitchinsupramolecularstructures AT sengemathiaso stericrepulsioninducedconformationalswitchinsupramolecularstructures |