Cargando…

Mitochondrial RNA modifications shape metabolic plasticity in metastasis

Aggressive and metastatic cancers show enhanced metabolic plasticity(1), but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications—5-methylcytosine (m(5)C) and its derivative 5-formylcytosine (f(5)C) (refs....

Descripción completa

Detalles Bibliográficos
Autores principales: Delaunay, Sylvain, Pascual, Gloria, Feng, Bohai, Klann, Kevin, Behm, Mikaela, Hotz-Wagenblatt, Agnes, Richter, Karsten, Zaoui, Karim, Herpel, Esther, Münch, Christian, Dietmann, Sabine, Hess, Jochen, Benitah, Salvador Aznar, Frye, Michaela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300468/
https://www.ncbi.nlm.nih.gov/pubmed/35768510
http://dx.doi.org/10.1038/s41586-022-04898-5
_version_ 1784751217738514432
author Delaunay, Sylvain
Pascual, Gloria
Feng, Bohai
Klann, Kevin
Behm, Mikaela
Hotz-Wagenblatt, Agnes
Richter, Karsten
Zaoui, Karim
Herpel, Esther
Münch, Christian
Dietmann, Sabine
Hess, Jochen
Benitah, Salvador Aznar
Frye, Michaela
author_facet Delaunay, Sylvain
Pascual, Gloria
Feng, Bohai
Klann, Kevin
Behm, Mikaela
Hotz-Wagenblatt, Agnes
Richter, Karsten
Zaoui, Karim
Herpel, Esther
Münch, Christian
Dietmann, Sabine
Hess, Jochen
Benitah, Salvador Aznar
Frye, Michaela
author_sort Delaunay, Sylvain
collection PubMed
description Aggressive and metastatic cancers show enhanced metabolic plasticity(1), but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications—5-methylcytosine (m(5)C) and its derivative 5-formylcytosine (f(5)C) (refs.(2–4))—drive the translation of mitochondrial mRNA to power metastasis. Translation of mitochondrially encoded subunits of the oxidative phosphorylation complex depends on the formation of m(5)C at position 34 in mitochondrial tRNA(Met). m(5)C-deficient human oral cancer cells exhibit increased levels of glycolysis and changes in their mitochondrial function that do not affect cell viability or primary tumour growth in vivo; however, metabolic plasticity is severely impaired as mitochondrial m(5)C-deficient tumours do not metastasize efficiently. We discovered that CD36-dependent non-dividing, metastasis-initiating tumour cells require mitochondrial m(5)C to activate invasion and dissemination. Moreover, a mitochondria-driven gene signature in patients with head and neck cancer is predictive for metastasis and disease progression. Finally, we confirm that this metabolic switch that allows the metastasis of tumour cells can be pharmacologically targeted through the inhibition of mitochondrial mRNA translation in vivo. Together, our results reveal that site-specific mitochondrial RNA modifications could be therapeutic targets to combat metastasis.
format Online
Article
Text
id pubmed-9300468
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-93004682022-07-22 Mitochondrial RNA modifications shape metabolic plasticity in metastasis Delaunay, Sylvain Pascual, Gloria Feng, Bohai Klann, Kevin Behm, Mikaela Hotz-Wagenblatt, Agnes Richter, Karsten Zaoui, Karim Herpel, Esther Münch, Christian Dietmann, Sabine Hess, Jochen Benitah, Salvador Aznar Frye, Michaela Nature Article Aggressive and metastatic cancers show enhanced metabolic plasticity(1), but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications—5-methylcytosine (m(5)C) and its derivative 5-formylcytosine (f(5)C) (refs.(2–4))—drive the translation of mitochondrial mRNA to power metastasis. Translation of mitochondrially encoded subunits of the oxidative phosphorylation complex depends on the formation of m(5)C at position 34 in mitochondrial tRNA(Met). m(5)C-deficient human oral cancer cells exhibit increased levels of glycolysis and changes in their mitochondrial function that do not affect cell viability or primary tumour growth in vivo; however, metabolic plasticity is severely impaired as mitochondrial m(5)C-deficient tumours do not metastasize efficiently. We discovered that CD36-dependent non-dividing, metastasis-initiating tumour cells require mitochondrial m(5)C to activate invasion and dissemination. Moreover, a mitochondria-driven gene signature in patients with head and neck cancer is predictive for metastasis and disease progression. Finally, we confirm that this metabolic switch that allows the metastasis of tumour cells can be pharmacologically targeted through the inhibition of mitochondrial mRNA translation in vivo. Together, our results reveal that site-specific mitochondrial RNA modifications could be therapeutic targets to combat metastasis. Nature Publishing Group UK 2022-06-29 2022 /pmc/articles/PMC9300468/ /pubmed/35768510 http://dx.doi.org/10.1038/s41586-022-04898-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Delaunay, Sylvain
Pascual, Gloria
Feng, Bohai
Klann, Kevin
Behm, Mikaela
Hotz-Wagenblatt, Agnes
Richter, Karsten
Zaoui, Karim
Herpel, Esther
Münch, Christian
Dietmann, Sabine
Hess, Jochen
Benitah, Salvador Aznar
Frye, Michaela
Mitochondrial RNA modifications shape metabolic plasticity in metastasis
title Mitochondrial RNA modifications shape metabolic plasticity in metastasis
title_full Mitochondrial RNA modifications shape metabolic plasticity in metastasis
title_fullStr Mitochondrial RNA modifications shape metabolic plasticity in metastasis
title_full_unstemmed Mitochondrial RNA modifications shape metabolic plasticity in metastasis
title_short Mitochondrial RNA modifications shape metabolic plasticity in metastasis
title_sort mitochondrial rna modifications shape metabolic plasticity in metastasis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300468/
https://www.ncbi.nlm.nih.gov/pubmed/35768510
http://dx.doi.org/10.1038/s41586-022-04898-5
work_keys_str_mv AT delaunaysylvain mitochondrialrnamodificationsshapemetabolicplasticityinmetastasis
AT pascualgloria mitochondrialrnamodificationsshapemetabolicplasticityinmetastasis
AT fengbohai mitochondrialrnamodificationsshapemetabolicplasticityinmetastasis
AT klannkevin mitochondrialrnamodificationsshapemetabolicplasticityinmetastasis
AT behmmikaela mitochondrialrnamodificationsshapemetabolicplasticityinmetastasis
AT hotzwagenblattagnes mitochondrialrnamodificationsshapemetabolicplasticityinmetastasis
AT richterkarsten mitochondrialrnamodificationsshapemetabolicplasticityinmetastasis
AT zaouikarim mitochondrialrnamodificationsshapemetabolicplasticityinmetastasis
AT herpelesther mitochondrialrnamodificationsshapemetabolicplasticityinmetastasis
AT munchchristian mitochondrialrnamodificationsshapemetabolicplasticityinmetastasis
AT dietmannsabine mitochondrialrnamodificationsshapemetabolicplasticityinmetastasis
AT hessjochen mitochondrialrnamodificationsshapemetabolicplasticityinmetastasis
AT benitahsalvadoraznar mitochondrialrnamodificationsshapemetabolicplasticityinmetastasis
AT fryemichaela mitochondrialrnamodificationsshapemetabolicplasticityinmetastasis