Cargando…
Digital holography-based 3D particle localization for single-molecule tweezer techniques
We present a three-dimensional (3D) imaging technique for the fast tracking of microscopic objects in a fluid environment. Our technique couples digital holographic microscopy with three-dimensional localization via parabolic masking. Compared with existing approaches, our method reconstructs 3D vol...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Biophysical Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300656/ https://www.ncbi.nlm.nih.gov/pubmed/35659644 http://dx.doi.org/10.1016/j.bpj.2022.06.001 |
_version_ | 1784751264321503232 |
---|---|
author | Flewellen, James L. Minoughan, Sophie Garcia, Isabel Llorente Tolar, Pavel |
author_facet | Flewellen, James L. Minoughan, Sophie Garcia, Isabel Llorente Tolar, Pavel |
author_sort | Flewellen, James L. |
collection | PubMed |
description | We present a three-dimensional (3D) imaging technique for the fast tracking of microscopic objects in a fluid environment. Our technique couples digital holographic microscopy with three-dimensional localization via parabolic masking. Compared with existing approaches, our method reconstructs 3D volumes from single-plane images, which greatly simplifies image acquisition, reduces the demand on microscope hardware, and facilitates tracking higher densities of microscopic particles while maintaining similar levels of precision. We demonstrate utility of this method in magnetic tweezer experiments, opening their use to multiplexed single-molecule force spectroscopy assays, which were previously limited by particle crowding and fast dissociation times. We propose that our technique will also be useful in other applications that involve the tracking of microscopic objects in three dimensions, such as studies of microorganism motility and 3D flow characterization of microfluidic devices. |
format | Online Article Text |
id | pubmed-9300656 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Biophysical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-93006562023-07-05 Digital holography-based 3D particle localization for single-molecule tweezer techniques Flewellen, James L. Minoughan, Sophie Garcia, Isabel Llorente Tolar, Pavel Biophys J Article We present a three-dimensional (3D) imaging technique for the fast tracking of microscopic objects in a fluid environment. Our technique couples digital holographic microscopy with three-dimensional localization via parabolic masking. Compared with existing approaches, our method reconstructs 3D volumes from single-plane images, which greatly simplifies image acquisition, reduces the demand on microscope hardware, and facilitates tracking higher densities of microscopic particles while maintaining similar levels of precision. We demonstrate utility of this method in magnetic tweezer experiments, opening their use to multiplexed single-molecule force spectroscopy assays, which were previously limited by particle crowding and fast dissociation times. We propose that our technique will also be useful in other applications that involve the tracking of microscopic objects in three dimensions, such as studies of microorganism motility and 3D flow characterization of microfluidic devices. The Biophysical Society 2022-07-05 2022-06-03 /pmc/articles/PMC9300656/ /pubmed/35659644 http://dx.doi.org/10.1016/j.bpj.2022.06.001 Text en © 2022 Biophysical Society. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Flewellen, James L. Minoughan, Sophie Garcia, Isabel Llorente Tolar, Pavel Digital holography-based 3D particle localization for single-molecule tweezer techniques |
title | Digital holography-based 3D particle localization for single-molecule tweezer techniques |
title_full | Digital holography-based 3D particle localization for single-molecule tweezer techniques |
title_fullStr | Digital holography-based 3D particle localization for single-molecule tweezer techniques |
title_full_unstemmed | Digital holography-based 3D particle localization for single-molecule tweezer techniques |
title_short | Digital holography-based 3D particle localization for single-molecule tweezer techniques |
title_sort | digital holography-based 3d particle localization for single-molecule tweezer techniques |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300656/ https://www.ncbi.nlm.nih.gov/pubmed/35659644 http://dx.doi.org/10.1016/j.bpj.2022.06.001 |
work_keys_str_mv | AT flewellenjamesl digitalholographybased3dparticlelocalizationforsinglemoleculetweezertechniques AT minoughansophie digitalholographybased3dparticlelocalizationforsinglemoleculetweezertechniques AT garciaisabelllorente digitalholographybased3dparticlelocalizationforsinglemoleculetweezertechniques AT tolarpavel digitalholographybased3dparticlelocalizationforsinglemoleculetweezertechniques |