Cargando…

Activating natural product synthesis using CRISPR interference and activation systems in Streptomyces

The rise of antibiotic-resistant bacteria represents a major threat to global health, creating an urgent need to discover new antibiotics. Natural products derived from the genus Streptomyces represent a rich and diverse repertoire of chemical molecules from which new antibiotics are likely to be fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Ameruoso, Andrea, Villegas Kcam, Maria Claudia, Cohen, Katherine Piper, Chappell, James
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303295/
https://www.ncbi.nlm.nih.gov/pubmed/35801861
http://dx.doi.org/10.1093/nar/gkac556
Descripción
Sumario:The rise of antibiotic-resistant bacteria represents a major threat to global health, creating an urgent need to discover new antibiotics. Natural products derived from the genus Streptomyces represent a rich and diverse repertoire of chemical molecules from which new antibiotics are likely to be found. However, a major challenge is that the biosynthetic gene clusters (BGCs) responsible for natural product synthesis are often poorly expressed under laboratory culturing conditions, thus preventing the isolation and screening of novel chemicals. To address this, we describe a novel approach to activate silent BGCs through rewiring endogenous regulation using synthetic gene regulators based upon CRISPR-Cas. First, we refine CRISPR interference (CRISPRi) and create CRISPR activation (CRISPRa) systems that allow for highly programmable and effective gene repression and activation in Streptomyces. We then harness these tools to activate a silent BGC by perturbing its endogenous regulatory network. Together, this work advances the synthetic regulatory toolbox for Streptomyces and facilitates the programmable activation of silent BGCs for novel chemical discovery.