Cargando…
A comparison of confounder selection and adjustment methods for estimating causal effects using large healthcare databases
PURPOSE: Confounding adjustment is required to estimate the effect of an exposure on an outcome in observational studies. However, variable selection and unmeasured confounding are particularly challenging when analyzing large healthcare data. Machine learning methods may help address these challeng...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304306/ https://www.ncbi.nlm.nih.gov/pubmed/34953160 http://dx.doi.org/10.1002/pds.5403 |