Cargando…
A comparison of confounder selection and adjustment methods for estimating causal effects using large healthcare databases
PURPOSE: Confounding adjustment is required to estimate the effect of an exposure on an outcome in observational studies. However, variable selection and unmeasured confounding are particularly challenging when analyzing large healthcare data. Machine learning methods may help address these challeng...
Autores principales: | Benasseur, Imane, Talbot, Denis, Durand, Madeleine, Holbrook, Anne, Matteau, Alexis, Potter, Brian J., Renoux, Christel, Schnitzer, Mireille E., Tarride, Jean‐Éric, Guertin, Jason R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304306/ https://www.ncbi.nlm.nih.gov/pubmed/34953160 http://dx.doi.org/10.1002/pds.5403 |
Ejemplares similares
-
Performance of the high-dimensional propensity score in adjusting for unmeasured confounders
por: Guertin, Jason R, et al.
Publicado: (2016) -
Illustration of the Impact of Unmeasured Confounding Within an
Economic Evaluation Based on Nonrandomized Data
por: Guertin, Jason R., et al.
Publicado: (2017) -
Frameworks for estimating causal effects in observational settings: comparing confounder adjustment and instrumental variables
por: Zawadzki, Roy S., et al.
Publicado: (2023) -
Causal effect estimation in sequencing studies: a Bayesian method to account for confounder adjustment uncertainty
por: Wang, Chi, et al.
Publicado: (2016) -
Confounding adjustment methods for multi-level treatment comparisons under lack of positivity and unknown model specification
por: Diop, S. Arona, et al.
Publicado: (2021)