Cargando…
Gene Fusion and Directed Evolution to Break Structural Symmetry and Boost Catalysis by an Oligomeric C−C Bond‐Forming Enzyme
Gene duplication and fusion are among the primary natural processes that generate new proteins from simpler ancestors. Here we adopted this strategy to evolve a promiscuous homohexameric 4‐oxalocrotonate tautomerase (4‐OT) into an efficient biocatalyst for enantioselective Michael reactions. We firs...
Autores principales: | Xu, Guangcai, Kunzendorf, Andreas, Crotti, Michele, Rozeboom, Henriëtte J., Thunnissen, Andy‐Mark W. H., Poelarends, Gerrit J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9306753/ https://www.ncbi.nlm.nih.gov/pubmed/34890491 http://dx.doi.org/10.1002/anie.202113970 |
Ejemplares similares
-
Unlocking Asymmetric Michael Additions in an Archetypical
Class I Aldolase by Directed Evolution
por: Kunzendorf, Andreas, et al.
Publicado: (2021) -
Unlocking New Reactivities in Enzymes by Iminium Catalysis
por: Xu, Guangcai, et al.
Publicado: (2022) -
Biocatalytic Asymmetric Cyclopropanations via Enzyme‐Bound Iminium Ion Intermediates
por: Kunzendorf, Andreas, et al.
Publicado: (2021) -
Enantiocomplementary Epoxidation Reactions Catalyzed by an Engineered Cofactor‐Independent Non‐natural Peroxygenase
por: Xu, Guangcai, et al.
Publicado: (2020) -
Breaking of Icosahedral Symmetry: C
(60) to C
(70)
por: Bodner, Mark, et al.
Publicado: (2014)