Cargando…
Assessing Alkali‐Metal Effects in the Structures and Reactivity of Mixed‐Ligand Alkyl/Alkoxide Alkali‐Metal Magnesiates
Advancing the understanding of using alkali‐metal alkoxides as additives to organomagnesium reagents in Mg−Br exchange reactions, a homologous series of mixed‐ligand alkyl/alkoxide alkali‐metal magnesiates [MMg(CH(2)SiMe(3))(2)(dmem)](2) [dmem=2‐{[2‐(dimethylamino)ethyl]methylamino} ethoxide; M=Li,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9306829/ https://www.ncbi.nlm.nih.gov/pubmed/34939701 http://dx.doi.org/10.1002/chem.202104164 |
Sumario: | Advancing the understanding of using alkali‐metal alkoxides as additives to organomagnesium reagents in Mg−Br exchange reactions, a homologous series of mixed‐ligand alkyl/alkoxide alkali‐metal magnesiates [MMg(CH(2)SiMe(3))(2)(dmem)](2) [dmem=2‐{[2‐(dimethylamino)ethyl]methylamino} ethoxide; M=Li, 1; Na, 2; (THF)K, 3] has been prepared. Structural and spectroscopic studies have established the constitutions of these heteroleptic/heterometallic species, which are retained in arene solution. Evaluation of their reactivity towards 2‐bromoanisole has uncovered a marked alkali‐metal effect with potassium magnesiate 3 being the most efficient of the three ate reagents. Studies probing the constitution of the exchange product from this reaction suggest that the putative [KMgAr(2)(dmem)](2) (Ar=o‐OMe−C(6)H(4)) intermediate undergoes redistribution into its single metal components [KAr](n) and [MgAr(dmem)](2) (5). This process can be circumvented by using a different potassium alkoxide containing an aliphatic chain such as KOR’ (R’=2‐ethylhexyl) which undergoes co‐complexation with Mg(CH(2)SiMe(3)) to give [KMg(CH(2)SiMe(3))(2)(OR’)](2) (7). This ate, in turn, reacts quantitatively with 2‐bromoanisole furnishing [KMgAr(2)(OR’)](2) (9) which is stable in solution as a bimetallic compound. Collectively this work highlights the complexity of these alkali‐metal mediated Mg−Br exchange reactions, where each reaction component can have a profound effect not only on the success of the reaction; but also the stability of the final metalated intermediates prior to their electrophilic interception. |
---|