Cargando…

A Modular Synthesis of Teraryl‐Based α‐Helix Mimetics, Part 3: Iodophenyltriflate Core Fragments Featuring Side Chains of Proteinogenic Amino Acids

Teraryl‐based α‐helix mimetics have proven to be useful compounds for the inhibition of protein‐protein interactions (PPI). We have developed a modular and flexible approach for the synthesis of teraryl‐based α‐helix mimetics using a benzene core unit featuring two leaving groups of differentiated r...

Descripción completa

Detalles Bibliográficos
Autores principales: Trobe, Melanie, Vareka, Martin, Schreiner, Till, Dobrounig, Patrick, Doler, Carina, Holzinger, Ella B., Steinegger, Andreas, Breinbauer, Rolf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9306992/
https://www.ncbi.nlm.nih.gov/pubmed/35910459
http://dx.doi.org/10.1002/ejoc.202101278
Descripción
Sumario:Teraryl‐based α‐helix mimetics have proven to be useful compounds for the inhibition of protein‐protein interactions (PPI). We have developed a modular and flexible approach for the synthesis of teraryl‐based α‐helix mimetics using a benzene core unit featuring two leaving groups of differentiated reactivity in the Pd‐catalyzed cross‐coupling used for teraryl assembly. In previous publications we have introduced the methodology of 4‐iodophenyltriflates decorated with the side chains of some of the proteinogenic amino acids. We herein report the core fragments corresponding to the previously missing amino acids Arg, Asn, Asp, Met, Trp and Tyr. Therefore, our set now encompasses all relevant amino acid analogues with the exception of His. In order to be compatible with the triflate moiety, some of the nucleophilic side chains had to be provided in a protected form to serve as stable building blocks. Additionally, cross‐coupling procedures for the assembly of teraryls were investigated.