Cargando…
Causal Modeling to Mitigate Selection Bias and Unmeasured Confounding in Internet-Based Epidemiology of COVID-19: Model Development and Validation
BACKGROUND: Selection bias and unmeasured confounding are fundamental problems in epidemiology that threaten study internal and external validity. These phenomena are particularly dangerous in internet-based public health surveillance, where traditional mitigation and adjustment methods are inapplic...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307267/ https://www.ncbi.nlm.nih.gov/pubmed/35605128 http://dx.doi.org/10.2196/31306 |