Cargando…
Learning what not to select for in antibody drug discovery
Identifying antibodies with high affinity and target specificity is crucial for drug discovery and development; however, filtering out antibody candidates with nonspecific or polyspecific binding profiles is also important. In this issue of Cell Reports Methods, Saksena et al. report a computational...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308151/ https://www.ncbi.nlm.nih.gov/pubmed/35880020 http://dx.doi.org/10.1016/j.crmeth.2022.100258 |
Sumario: | Identifying antibodies with high affinity and target specificity is crucial for drug discovery and development; however, filtering out antibody candidates with nonspecific or polyspecific binding profiles is also important. In this issue of Cell Reports Methods, Saksena et al. report a computational counterselection method combining deep sequencing and machine learning for identifying nonspecific antibody candidates and demonstrate that it has advantages over more established molecular counterselection methods. |
---|