Cargando…
Recognition of BRAF by CDC37 and Re-Evaluation of the Activation Mechanism for the Class 2 BRAF-L597R Mutant
The kinome specific co-chaperone, CDC37 (cell division cycle 37), is responsible for delivering BRAF (B-Rapidly Accelerated Fibrosarcoma) to the Hsp90 (heat shock protein 90) complex, where it is then translocated to the RAS (protooncogene product p21) complex at the plasma membrane for RAS mediated...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313131/ https://www.ncbi.nlm.nih.gov/pubmed/35883461 http://dx.doi.org/10.3390/biom12070905 |
_version_ | 1784754003979010048 |
---|---|
author | Bjorklund, Dennis M. Morgan, R. Marc L. Oberoi, Jasmeen Day, Katie L. I. M. Galliou, Panagiota A. Prodromou, Chrisostomos |
author_facet | Bjorklund, Dennis M. Morgan, R. Marc L. Oberoi, Jasmeen Day, Katie L. I. M. Galliou, Panagiota A. Prodromou, Chrisostomos |
author_sort | Bjorklund, Dennis M. |
collection | PubMed |
description | The kinome specific co-chaperone, CDC37 (cell division cycle 37), is responsible for delivering BRAF (B-Rapidly Accelerated Fibrosarcoma) to the Hsp90 (heat shock protein 90) complex, where it is then translocated to the RAS (protooncogene product p21) complex at the plasma membrane for RAS mediated dimerization and subsequent activation. We identify a bipartite interaction between CDC37 and BRAF and delimitate the essential structural elements of CDC37 involved in BRAF recognition. We find an extended and conserved CDC37 motif, (20)HPNID---SL--W(31), responsible for recognizing the C-lobe of BRAF kinase domain, while the c-terminal domain of CDC37 is responsible for the second of the bipartite interaction with BRAF. We show that dimerization of BRAF, independent of nucleotide binding, can act as a potent signal that prevents CDC37 recognition and discuss the implications of mutations in BRAF and the consequences on signaling in a clinical setting, particularly for class 2 BRAF mutations. |
format | Online Article Text |
id | pubmed-9313131 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93131312022-07-26 Recognition of BRAF by CDC37 and Re-Evaluation of the Activation Mechanism for the Class 2 BRAF-L597R Mutant Bjorklund, Dennis M. Morgan, R. Marc L. Oberoi, Jasmeen Day, Katie L. I. M. Galliou, Panagiota A. Prodromou, Chrisostomos Biomolecules Article The kinome specific co-chaperone, CDC37 (cell division cycle 37), is responsible for delivering BRAF (B-Rapidly Accelerated Fibrosarcoma) to the Hsp90 (heat shock protein 90) complex, where it is then translocated to the RAS (protooncogene product p21) complex at the plasma membrane for RAS mediated dimerization and subsequent activation. We identify a bipartite interaction between CDC37 and BRAF and delimitate the essential structural elements of CDC37 involved in BRAF recognition. We find an extended and conserved CDC37 motif, (20)HPNID---SL--W(31), responsible for recognizing the C-lobe of BRAF kinase domain, while the c-terminal domain of CDC37 is responsible for the second of the bipartite interaction with BRAF. We show that dimerization of BRAF, independent of nucleotide binding, can act as a potent signal that prevents CDC37 recognition and discuss the implications of mutations in BRAF and the consequences on signaling in a clinical setting, particularly for class 2 BRAF mutations. MDPI 2022-06-28 /pmc/articles/PMC9313131/ /pubmed/35883461 http://dx.doi.org/10.3390/biom12070905 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bjorklund, Dennis M. Morgan, R. Marc L. Oberoi, Jasmeen Day, Katie L. I. M. Galliou, Panagiota A. Prodromou, Chrisostomos Recognition of BRAF by CDC37 and Re-Evaluation of the Activation Mechanism for the Class 2 BRAF-L597R Mutant |
title | Recognition of BRAF by CDC37 and Re-Evaluation of the Activation Mechanism for the Class 2 BRAF-L597R Mutant |
title_full | Recognition of BRAF by CDC37 and Re-Evaluation of the Activation Mechanism for the Class 2 BRAF-L597R Mutant |
title_fullStr | Recognition of BRAF by CDC37 and Re-Evaluation of the Activation Mechanism for the Class 2 BRAF-L597R Mutant |
title_full_unstemmed | Recognition of BRAF by CDC37 and Re-Evaluation of the Activation Mechanism for the Class 2 BRAF-L597R Mutant |
title_short | Recognition of BRAF by CDC37 and Re-Evaluation of the Activation Mechanism for the Class 2 BRAF-L597R Mutant |
title_sort | recognition of braf by cdc37 and re-evaluation of the activation mechanism for the class 2 braf-l597r mutant |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313131/ https://www.ncbi.nlm.nih.gov/pubmed/35883461 http://dx.doi.org/10.3390/biom12070905 |
work_keys_str_mv | AT bjorklunddennism recognitionofbrafbycdc37andreevaluationoftheactivationmechanismfortheclass2brafl597rmutant AT morganrmarcl recognitionofbrafbycdc37andreevaluationoftheactivationmechanismfortheclass2brafl597rmutant AT oberoijasmeen recognitionofbrafbycdc37andreevaluationoftheactivationmechanismfortheclass2brafl597rmutant AT daykatielim recognitionofbrafbycdc37andreevaluationoftheactivationmechanismfortheclass2brafl597rmutant AT gallioupanagiotaa recognitionofbrafbycdc37andreevaluationoftheactivationmechanismfortheclass2brafl597rmutant AT prodromouchrisostomos recognitionofbrafbycdc37andreevaluationoftheactivationmechanismfortheclass2brafl597rmutant |