Cargando…
A carvacrol‐based product reduces Campylobacter jejuni load and alters microbiota composition in the caeca of chickens
AIM: This study was conducted to test the ability of a carvacrol‐based formulation (Phodé, France) to decrease the C. jejuni caecal load in inoculated broiler chickens and to study the impact of the C. jejuni inoculation alone or combined with the product, on the caecal microbiota. METHODS AND RESUL...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314584/ https://www.ncbi.nlm.nih.gov/pubmed/35278017 http://dx.doi.org/10.1111/jam.15521 |
_version_ | 1784754351383773184 |
---|---|
author | Allaoua, Marion Bonnafé, Elsa Etienne, Pierre Noirot, Virginie Gabarrou, Jean‐François Castinel, Adrien Pascal, Géraldine Darbot, Vincent Treilhou, Michel Combes, Sylvie |
author_facet | Allaoua, Marion Bonnafé, Elsa Etienne, Pierre Noirot, Virginie Gabarrou, Jean‐François Castinel, Adrien Pascal, Géraldine Darbot, Vincent Treilhou, Michel Combes, Sylvie |
author_sort | Allaoua, Marion |
collection | PubMed |
description | AIM: This study was conducted to test the ability of a carvacrol‐based formulation (Phodé, France) to decrease the C. jejuni caecal load in inoculated broiler chickens and to study the impact of the C. jejuni inoculation alone or combined with the product, on the caecal microbiota. METHODS AND RESULTS: On day 1, chickens were either fed a control feed or the same diet supplemented with a carvacrol‐based product. On day 21, the carvacrol‐supplemented chickens and half of the non‐supplemented chickens were inoculated with C. jejuni (10(8) CFU). Quantitative PCR was used to quantify C. jejuni in chicken caecal samples and 16S rRNA gene sequencing was carried out at 25, 31 and 35 days of age. A significant decrease of 1.4 log of the C. jejuni caecal load was observed in 35‐day‐old chickens supplemented with the product, compared to the inoculated and unsupplemented group (p < 0.05). The inoculation with C. jejuni significantly increased the population richness, Shannon and Simpson diversity and altered beta‐diversity. Compared to the control group, the C. jejuni inoculation causes significant changes in the microbiota. The carvacrol‐based product associated with C. jejuni inoculation increased the diversity and strongly modified the structure of the microbial community. Functional analysis by 16S rRNA gene‐based predictions further revealed that the product up‐regulated the pathways involved in the antimicrobial synthesis, which could explain its shaping effect on the caecal microbiota. CONCLUSIONS: Our study confirmed the impairment of the caecal bacterial community after inoculation and demonstrated the ability of the product to reduce the C. jejuni load in chickens. Further investigations are needed to better understand the mode of action of this product to promote the installation of a beneficial microbiota to its host. SIGNIFICANCE AND IMPACT OF THE STUDY: Results suggested that this product could be promising to control C. jejuni contamination of broilers. |
format | Online Article Text |
id | pubmed-9314584 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93145842022-07-30 A carvacrol‐based product reduces Campylobacter jejuni load and alters microbiota composition in the caeca of chickens Allaoua, Marion Bonnafé, Elsa Etienne, Pierre Noirot, Virginie Gabarrou, Jean‐François Castinel, Adrien Pascal, Géraldine Darbot, Vincent Treilhou, Michel Combes, Sylvie J Appl Microbiol Original Articles AIM: This study was conducted to test the ability of a carvacrol‐based formulation (Phodé, France) to decrease the C. jejuni caecal load in inoculated broiler chickens and to study the impact of the C. jejuni inoculation alone or combined with the product, on the caecal microbiota. METHODS AND RESULTS: On day 1, chickens were either fed a control feed or the same diet supplemented with a carvacrol‐based product. On day 21, the carvacrol‐supplemented chickens and half of the non‐supplemented chickens were inoculated with C. jejuni (10(8) CFU). Quantitative PCR was used to quantify C. jejuni in chicken caecal samples and 16S rRNA gene sequencing was carried out at 25, 31 and 35 days of age. A significant decrease of 1.4 log of the C. jejuni caecal load was observed in 35‐day‐old chickens supplemented with the product, compared to the inoculated and unsupplemented group (p < 0.05). The inoculation with C. jejuni significantly increased the population richness, Shannon and Simpson diversity and altered beta‐diversity. Compared to the control group, the C. jejuni inoculation causes significant changes in the microbiota. The carvacrol‐based product associated with C. jejuni inoculation increased the diversity and strongly modified the structure of the microbial community. Functional analysis by 16S rRNA gene‐based predictions further revealed that the product up‐regulated the pathways involved in the antimicrobial synthesis, which could explain its shaping effect on the caecal microbiota. CONCLUSIONS: Our study confirmed the impairment of the caecal bacterial community after inoculation and demonstrated the ability of the product to reduce the C. jejuni load in chickens. Further investigations are needed to better understand the mode of action of this product to promote the installation of a beneficial microbiota to its host. SIGNIFICANCE AND IMPACT OF THE STUDY: Results suggested that this product could be promising to control C. jejuni contamination of broilers. John Wiley and Sons Inc. 2022-03-21 2022-06 /pmc/articles/PMC9314584/ /pubmed/35278017 http://dx.doi.org/10.1111/jam.15521 Text en © 2022 Phodé. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Articles Allaoua, Marion Bonnafé, Elsa Etienne, Pierre Noirot, Virginie Gabarrou, Jean‐François Castinel, Adrien Pascal, Géraldine Darbot, Vincent Treilhou, Michel Combes, Sylvie A carvacrol‐based product reduces Campylobacter jejuni load and alters microbiota composition in the caeca of chickens |
title | A carvacrol‐based product reduces Campylobacter jejuni load and alters microbiota composition in the caeca of chickens |
title_full | A carvacrol‐based product reduces Campylobacter jejuni load and alters microbiota composition in the caeca of chickens |
title_fullStr | A carvacrol‐based product reduces Campylobacter jejuni load and alters microbiota composition in the caeca of chickens |
title_full_unstemmed | A carvacrol‐based product reduces Campylobacter jejuni load and alters microbiota composition in the caeca of chickens |
title_short | A carvacrol‐based product reduces Campylobacter jejuni load and alters microbiota composition in the caeca of chickens |
title_sort | carvacrol‐based product reduces campylobacter jejuni load and alters microbiota composition in the caeca of chickens |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314584/ https://www.ncbi.nlm.nih.gov/pubmed/35278017 http://dx.doi.org/10.1111/jam.15521 |
work_keys_str_mv | AT allaouamarion acarvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens AT bonnafeelsa acarvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens AT etiennepierre acarvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens AT noirotvirginie acarvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens AT gabarroujeanfrancois acarvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens AT castineladrien acarvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens AT pascalgeraldine acarvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens AT darbotvincent acarvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens AT treilhoumichel acarvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens AT combessylvie acarvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens AT allaouamarion carvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens AT bonnafeelsa carvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens AT etiennepierre carvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens AT noirotvirginie carvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens AT gabarroujeanfrancois carvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens AT castineladrien carvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens AT pascalgeraldine carvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens AT darbotvincent carvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens AT treilhoumichel carvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens AT combessylvie carvacrolbasedproductreducescampylobacterjejuniloadandaltersmicrobiotacompositioninthecaecaofchickens |