Cargando…

Effects of Variable-Resistance Training Versus Constant-Resistance Training on Maximum Strength: A Systematic Review and Meta-Analysis

Greater muscular strength is generally associated with superior sports performance, for example, in jumping, sprinting, and throwing. This meta-analysis aims to compare the effects of variable-resistance training (VRT) and constant-resistance training (CRT) on the maximum strength of trained and unt...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Yiguan, Xu, Yangyang, Hong, Feng, Li, Junbo, Ye, Weibing, Korivi, Mallikarjuna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317775/
https://www.ncbi.nlm.nih.gov/pubmed/35886409
http://dx.doi.org/10.3390/ijerph19148559
Descripción
Sumario:Greater muscular strength is generally associated with superior sports performance, for example, in jumping, sprinting, and throwing. This meta-analysis aims to compare the effects of variable-resistance training (VRT) and constant-resistance training (CRT) on the maximum strength of trained and untrained subjects. PubMed, Web of Science, and Google Scholar were comprehensively searched to identify relevant studies published up to January 2022. Fourteen studies that met the inclusion criteria were used for the systematic review and meta-analysis. Data regarding training status, training modality, and type of outcome measure were extracted for the analyses. The Cochrane Collaboration tool was used to assess the risk of bias. The pooled outcome showed improved maximum strength with VRT, which was significantly higher than that with CRT (ES = 0.80; 95% CI: 0.42–1.19) for all the subjects. In addition, trained subjects experienced greater maximum-strength improvements with VRT than with CRT (ES = 0.57; 95% CI: 0.22–0.93). Based on subgroup analyses, maximum-strength improvement with a VRT load of ≥80% of 1 repetition maximum (1RM) was significantly higher than that with CRT (ES = 0.76; 95% CI: 0.37–1.16) in trained subjects, while no significant differences were found between VRT and CRT for maximum-strength improvement when the load was <80% (ES = 0.00; 95% CI: −0.55–0.55). The untrained subjects also achieved greater maximum strength with VRT than with CRT (ES = 1.34; 95% CI: 0.28–2.40). Interestingly, the improved maximum strength of untrained subjects with a VRT load of <80% of 1RM was significantly higher than that with CRT (ES = 2.38; 95% CI: 1.39–3.36); however, no significant differences were noted between VRT and CRT when the load was ≥80% of 1RM (ES = −0.04; 95% CI: −0.89–0.81). Our findings show that subjects with resistance training experience could use a load of ≥80% of 1RM and subjects without resistance training experience could use a load of <80% of 1RM to obtain greater VRT benefits.