Cargando…
EEG Emotion Classification Network Based on Attention Fusion of Multi-Channel Band Features
Understanding learners’ emotions can help optimize instruction sand further conduct effective learning interventions. Most existing studies on student emotion recognition are based on multiple manifestations of external behavior, which do not fully use physiological signals. In this context, on the...
Autores principales: | Zhu, Xiaoliang, Rong, Wenting, Zhao, Liang, He, Zili, Yang, Qiaolai, Sun, Junyi, Liu, Gendong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9318779/ https://www.ncbi.nlm.nih.gov/pubmed/35890933 http://dx.doi.org/10.3390/s22145252 |
Ejemplares similares
-
Emotion Classification from Multi-Band Electroencephalogram Data Using Dynamic Simplifying Graph Convolutional Network and Channel Style Recalibration Module
por: Zhu, Xiaoliang, et al.
Publicado: (2023) -
An Improved Tiered Head Pose Estimation Network with Self-Adjust Loss Function
por: Zhu, Xiaoliang, et al.
Publicado: (2022) -
A Cascade Attention Based Facial Expression Recognition Network by Fusing Multi-Scale Spatio-Temporal Features
por: Zhu, Xiaoliang, et al.
Publicado: (2022) -
Granger-Causality-Based Multi-Frequency Band EEG Graph Feature Extraction and Fusion for Emotion Recognition
por: Zhang, Jing, et al.
Publicado: (2022) -
EEG Emotion Recognition by Fusion of Multi-Scale Features
por: Du, Xiuli, et al.
Publicado: (2023)