Cargando…
Deep Dilated Convolutional Neural Network for Crowd Density Image Classification with Dataset Augmentation for Hajj Pilgrimage
Almost two million Muslim pilgrims from all around the globe visit Mecca each year to conduct Hajj. Each year, the number of pilgrims grows, creating worries about how to handle such large crowds and avoid unpleasant accidents or crowd congestion catastrophes. In this paper, we introduced deep Hajj...
Autores principales: | Bhuiyan, Roman, Abdullah, Junaidi, Hashim, Noramiza, Al Farid, Fahmid, Mohd Isa, Wan Noorshahida, Uddin, Jia, Abdullah, Norra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320336/ https://www.ncbi.nlm.nih.gov/pubmed/35890782 http://dx.doi.org/10.3390/s22145102 |
Ejemplares similares
-
A deep crowd density classification model for Hajj pilgrimage using fully convolutional neural network
por: Bhuiyan, Md Roman, et al.
Publicado: (2022) -
Crowd density estimation using deep learning for Hajj pilgrimage video analytics
por: BHUIYAN, MD ROMAN, et al.
Publicado: (2022) -
A Structured and Methodological Review on Vision-Based Hand Gesture Recognition System
por: Al Farid, Fahmid, et al.
Publicado: (2022) -
The challenges of cholera at the 2017 Hajj pilgrimage
por: Zumla, Alimuddin, et al.
Publicado: (2017) -
Health conditions for travellers to Saudi Arabia for the pilgrimage to Mecca (Hajj) – 2015
por: Algarni, Homoud, et al.
Publicado: (2016)