Cargando…
A Magnetic Metal Hard Mask on Silicon Substrate for Direct Patterning Ultra-High-Resolution OLED Displays
With the development of virtual reality/augmented reality (VR/AR) display devices, the conventional fine metal mask is limited by the wet etch process, which no longer meets the demand for high pixels per inch (PPI) displays. We deposited a layer of magnetic metal on the silicon substrate by physica...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320614/ https://www.ncbi.nlm.nih.gov/pubmed/35888814 http://dx.doi.org/10.3390/mi13070997 |
Sumario: | With the development of virtual reality/augmented reality (VR/AR) display devices, the conventional fine metal mask is limited by the wet etch process, which no longer meets the demand for high pixels per inch (PPI) displays. We deposited a layer of magnetic metal on the silicon substrate by physical vapor deposition (PVD), and then developed a 2-inch, 3175 PPI magnetic metal hard mask on silicon substrate (MMS) through deep silicon etching and other micro-nano processing for patterning Organic Light-Emitting Diodes (OLED) displays, which can achieve smaller pixel size and higher PPI. MMS can not only solve the bottleneck problem of the traditional invar alloy shadow mask with low PPI, but also reduce the bending caused by the deformation of the silicon-based mask due to gravity, so that it achieves high PPI and higher uniformity in OLED displays. |
---|