Cargando…
Regulated Expression of lpxC Allows for Reduction of Endotoxicity in Bordetella pertussis
The Gram-negative bacterium Bordetella pertussis is the causative agent of a respiratory infection known as whooping cough. Previously developed whole-cell pertussis vaccines were effective, but appeared to be too reactogenic mainly due to the presence of lipopolysaccharide (LPS, also known as endot...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324023/ https://www.ncbi.nlm.nih.gov/pubmed/35887374 http://dx.doi.org/10.3390/ijms23148027 |
_version_ | 1784756705401241600 |
---|---|
author | Pérez-Ortega, Jesús van Boxtel, Ria de Jonge, Eline F. Tommassen, Jan |
author_facet | Pérez-Ortega, Jesús van Boxtel, Ria de Jonge, Eline F. Tommassen, Jan |
author_sort | Pérez-Ortega, Jesús |
collection | PubMed |
description | The Gram-negative bacterium Bordetella pertussis is the causative agent of a respiratory infection known as whooping cough. Previously developed whole-cell pertussis vaccines were effective, but appeared to be too reactogenic mainly due to the presence of lipopolysaccharide (LPS, also known as endotoxin) in the outer membrane (OM). Here, we investigated the possibility of reducing endotoxicity by modulating the LPS levels. The promoter of the lpxC gene, which encodes the first committed enzyme in LPS biosynthesis, was replaced by an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible promoter. The IPTG was essential for growth, even when the construct was moved into a strain that should allow for the replacement of LPS in the outer leaflet of the OM with phospholipids by defective phospholipid transporter Mla and OM phospholipase A. LpxC depletion in the absence of IPTG resulted in morphological changes of the cells and in overproduction of outer-membrane vesicles (OMVs). The reduced amounts of LPS in whole-cell preparations and in isolated OMVs of LpxC-depleted cells resulted in lower activation of Toll-like receptor 4 in HEK-Blue reporter cells. We suggest that, besides lipid A engineering, also a reduction in LPS synthesis is an attractive strategy for the production of either whole-cell- or OMV-based vaccines, with reduced reactogenicity for B. pertussis and other Gram-negative bacteria. |
format | Online Article Text |
id | pubmed-9324023 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93240232022-07-27 Regulated Expression of lpxC Allows for Reduction of Endotoxicity in Bordetella pertussis Pérez-Ortega, Jesús van Boxtel, Ria de Jonge, Eline F. Tommassen, Jan Int J Mol Sci Article The Gram-negative bacterium Bordetella pertussis is the causative agent of a respiratory infection known as whooping cough. Previously developed whole-cell pertussis vaccines were effective, but appeared to be too reactogenic mainly due to the presence of lipopolysaccharide (LPS, also known as endotoxin) in the outer membrane (OM). Here, we investigated the possibility of reducing endotoxicity by modulating the LPS levels. The promoter of the lpxC gene, which encodes the first committed enzyme in LPS biosynthesis, was replaced by an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible promoter. The IPTG was essential for growth, even when the construct was moved into a strain that should allow for the replacement of LPS in the outer leaflet of the OM with phospholipids by defective phospholipid transporter Mla and OM phospholipase A. LpxC depletion in the absence of IPTG resulted in morphological changes of the cells and in overproduction of outer-membrane vesicles (OMVs). The reduced amounts of LPS in whole-cell preparations and in isolated OMVs of LpxC-depleted cells resulted in lower activation of Toll-like receptor 4 in HEK-Blue reporter cells. We suggest that, besides lipid A engineering, also a reduction in LPS synthesis is an attractive strategy for the production of either whole-cell- or OMV-based vaccines, with reduced reactogenicity for B. pertussis and other Gram-negative bacteria. MDPI 2022-07-21 /pmc/articles/PMC9324023/ /pubmed/35887374 http://dx.doi.org/10.3390/ijms23148027 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pérez-Ortega, Jesús van Boxtel, Ria de Jonge, Eline F. Tommassen, Jan Regulated Expression of lpxC Allows for Reduction of Endotoxicity in Bordetella pertussis |
title | Regulated Expression of lpxC Allows for Reduction of Endotoxicity in Bordetella pertussis |
title_full | Regulated Expression of lpxC Allows for Reduction of Endotoxicity in Bordetella pertussis |
title_fullStr | Regulated Expression of lpxC Allows for Reduction of Endotoxicity in Bordetella pertussis |
title_full_unstemmed | Regulated Expression of lpxC Allows for Reduction of Endotoxicity in Bordetella pertussis |
title_short | Regulated Expression of lpxC Allows for Reduction of Endotoxicity in Bordetella pertussis |
title_sort | regulated expression of lpxc allows for reduction of endotoxicity in bordetella pertussis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324023/ https://www.ncbi.nlm.nih.gov/pubmed/35887374 http://dx.doi.org/10.3390/ijms23148027 |
work_keys_str_mv | AT perezortegajesus regulatedexpressionoflpxcallowsforreductionofendotoxicityinbordetellapertussis AT vanboxtelria regulatedexpressionoflpxcallowsforreductionofendotoxicityinbordetellapertussis AT dejongeelinef regulatedexpressionoflpxcallowsforreductionofendotoxicityinbordetellapertussis AT tommassenjan regulatedexpressionoflpxcallowsforreductionofendotoxicityinbordetellapertussis |