Cargando…
Galactomannan-Decorated Lipidic Nanocarrier for Gene Supplementation Therapy in Fabry Disease
Gene supplementation therapy with plasmid DNA (pDNA) represents one of the most promising strategies for the treatment of monogenic diseases such as Fabry disease (FD). In the present work, we developed a solid lipid nanoparticles (SLN)-based non-viral vector with a size below 100 nm, and decorated...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324688/ https://www.ncbi.nlm.nih.gov/pubmed/35889565 http://dx.doi.org/10.3390/nano12142339 |
_version_ | 1784756869607194624 |
---|---|
author | Rodríguez-Castejón, Julen Gómez-Aguado, Itziar Beraza-Millor, Marina Solinís, María Ángeles del Pozo-Rodríguez, Ana Rodríguez-Gascón, Alicia |
author_facet | Rodríguez-Castejón, Julen Gómez-Aguado, Itziar Beraza-Millor, Marina Solinís, María Ángeles del Pozo-Rodríguez, Ana Rodríguez-Gascón, Alicia |
author_sort | Rodríguez-Castejón, Julen |
collection | PubMed |
description | Gene supplementation therapy with plasmid DNA (pDNA) represents one of the most promising strategies for the treatment of monogenic diseases such as Fabry disease (FD). In the present work, we developed a solid lipid nanoparticles (SLN)-based non-viral vector with a size below 100 nm, and decorated with galactomannan (GM) to target the liver as an α-Galactosidase A (α-Gal A) production factory. After the physicochemical characterization of the GM-SLN vector, cellular uptake, transfection efficacy and capacity to increase α-Gal A activity were evaluated in vitro in a liver cell line (Hep G2) and in vivo in an animal model of FD. The vector showed efficient internalization and it was highly efficient in promoting protein synthesis in Hep G2 cells. Additionally, the vector did not show relevant agglutination of erythrocytes and lacked hemolytic activity. After the systemic administration to Fabry mice, it achieved clinically relevant α-Gal A activity levels in plasma, liver, and other organs, importantly in heart and kidneys, two of the most damaged organs in FD. This work shows the potential application of GM-decorated lipidic nanocarries for the treatment of FD by pDNA-based gene augmentation. |
format | Online Article Text |
id | pubmed-9324688 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93246882022-07-27 Galactomannan-Decorated Lipidic Nanocarrier for Gene Supplementation Therapy in Fabry Disease Rodríguez-Castejón, Julen Gómez-Aguado, Itziar Beraza-Millor, Marina Solinís, María Ángeles del Pozo-Rodríguez, Ana Rodríguez-Gascón, Alicia Nanomaterials (Basel) Article Gene supplementation therapy with plasmid DNA (pDNA) represents one of the most promising strategies for the treatment of monogenic diseases such as Fabry disease (FD). In the present work, we developed a solid lipid nanoparticles (SLN)-based non-viral vector with a size below 100 nm, and decorated with galactomannan (GM) to target the liver as an α-Galactosidase A (α-Gal A) production factory. After the physicochemical characterization of the GM-SLN vector, cellular uptake, transfection efficacy and capacity to increase α-Gal A activity were evaluated in vitro in a liver cell line (Hep G2) and in vivo in an animal model of FD. The vector showed efficient internalization and it was highly efficient in promoting protein synthesis in Hep G2 cells. Additionally, the vector did not show relevant agglutination of erythrocytes and lacked hemolytic activity. After the systemic administration to Fabry mice, it achieved clinically relevant α-Gal A activity levels in plasma, liver, and other organs, importantly in heart and kidneys, two of the most damaged organs in FD. This work shows the potential application of GM-decorated lipidic nanocarries for the treatment of FD by pDNA-based gene augmentation. MDPI 2022-07-08 /pmc/articles/PMC9324688/ /pubmed/35889565 http://dx.doi.org/10.3390/nano12142339 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rodríguez-Castejón, Julen Gómez-Aguado, Itziar Beraza-Millor, Marina Solinís, María Ángeles del Pozo-Rodríguez, Ana Rodríguez-Gascón, Alicia Galactomannan-Decorated Lipidic Nanocarrier for Gene Supplementation Therapy in Fabry Disease |
title | Galactomannan-Decorated Lipidic Nanocarrier for Gene Supplementation Therapy in Fabry Disease |
title_full | Galactomannan-Decorated Lipidic Nanocarrier for Gene Supplementation Therapy in Fabry Disease |
title_fullStr | Galactomannan-Decorated Lipidic Nanocarrier for Gene Supplementation Therapy in Fabry Disease |
title_full_unstemmed | Galactomannan-Decorated Lipidic Nanocarrier for Gene Supplementation Therapy in Fabry Disease |
title_short | Galactomannan-Decorated Lipidic Nanocarrier for Gene Supplementation Therapy in Fabry Disease |
title_sort | galactomannan-decorated lipidic nanocarrier for gene supplementation therapy in fabry disease |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324688/ https://www.ncbi.nlm.nih.gov/pubmed/35889565 http://dx.doi.org/10.3390/nano12142339 |
work_keys_str_mv | AT rodriguezcastejonjulen galactomannandecoratedlipidicnanocarrierforgenesupplementationtherapyinfabrydisease AT gomezaguadoitziar galactomannandecoratedlipidicnanocarrierforgenesupplementationtherapyinfabrydisease AT berazamillormarina galactomannandecoratedlipidicnanocarrierforgenesupplementationtherapyinfabrydisease AT solinismariaangeles galactomannandecoratedlipidicnanocarrierforgenesupplementationtherapyinfabrydisease AT delpozorodriguezana galactomannandecoratedlipidicnanocarrierforgenesupplementationtherapyinfabrydisease AT rodriguezgasconalicia galactomannandecoratedlipidicnanocarrierforgenesupplementationtherapyinfabrydisease |