Cargando…
Towards Reliable Parameter Extraction in MEMS Final Module Testing Using Bayesian Inference
In micro-electro-mechanical systems (MEMS) testing high overall precision and reliability are essential. Due to the additional requirement of runtime efficiency, machine learning methods have been investigated in recent years. However, these methods are often associated with inherent challenges conc...
Autores principales: | Heringhaus, Monika E., Zhang, Yi, Zimmermann, André, Mikelsons, Lars |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325251/ https://www.ncbi.nlm.nih.gov/pubmed/35891087 http://dx.doi.org/10.3390/s22145408 |
Ejemplares similares
-
MEMS reliability
por: Hartzell, Allyson L.
Publicado: (2010) -
Bayesian inference: parameter estimation and decisions
por: Harney, Hanns L
Publicado: (2003) -
Reliable and resource preserving emulation for Bayesian model inference
por: Günther, Sven
Publicado: (2023) -
Bayesian inference of epidemiological parameters from transmission experiments
por: Hu, Ben, et al.
Publicado: (2017) -
Estimating uncertainty and reliability of social network data using Bayesian inference
por: Farine, Damien R., et al.
Publicado: (2015)