Cargando…
Biocatalytic decarboxylative Michael addition for synthesis of 1,4-benzoxazinone derivatives
The Candida antarctica lipase B (Novozym 435) is found to catalyze a novel decarboxylative Michael addition in vinylogous carbamate systems for the synthesis of 1,4-benzoxazinone derivatives. The reaction goes through Michael addition, ester hydrolysis and decarboxylation. A possible mechanism is su...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325775/ https://www.ncbi.nlm.nih.gov/pubmed/35882869 http://dx.doi.org/10.1038/s41598-022-16291-3 |
Sumario: | The Candida antarctica lipase B (Novozym 435) is found to catalyze a novel decarboxylative Michael addition in vinylogous carbamate systems for the synthesis of 1,4-benzoxazinone derivatives. The reaction goes through Michael addition, ester hydrolysis and decarboxylation. A possible mechanism is suggested, with simultaneous lipase-catalyzed Michael addition and ester hydrolysis. The present methodology offers formation of complex products through multi-step reactions in a one pot process under mild and facile reaction conditions with moderate to high yields (51–90%) and no side product formation. The reaction seems to be is a great example of enzymatic promiscuity. |
---|