Cargando…

Benchmarking Perturbation-Based Saliency Maps for Explaining Atari Agents

One of the most prominent methods for explaining the behavior of Deep Reinforcement Learning (DRL) agents is the generation of saliency maps that show how much each pixel attributed to the agents' decision. However, there is no work that computationally evaluates and compares the fidelity of di...

Descripción completa

Detalles Bibliográficos
Autores principales: Huber, Tobias, Limmer, Benedikt, André, Elisabeth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9326049/
https://www.ncbi.nlm.nih.gov/pubmed/35910188
http://dx.doi.org/10.3389/frai.2022.903875