Cargando…
Exploring Automated Classification Approaches to Advance the Assessment of Collaborative Problem Solving Skills
Competency in skills associated with collaborative problem solving (CPS) is critical for many contexts, including school, the workplace, and the military. Innovative approaches for assessing individuals’ CPS competency are necessary, as traditional assessment types such as multiple -choice items are...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9326529/ https://www.ncbi.nlm.nih.gov/pubmed/35893270 http://dx.doi.org/10.3390/jintelligence10030039 |
_version_ | 1784757306935738368 |
---|---|
author | Andrews-Todd, Jessica Steinberg, Jonathan Flor, Michael Forsyth, Carolyn M. |
author_facet | Andrews-Todd, Jessica Steinberg, Jonathan Flor, Michael Forsyth, Carolyn M. |
author_sort | Andrews-Todd, Jessica |
collection | PubMed |
description | Competency in skills associated with collaborative problem solving (CPS) is critical for many contexts, including school, the workplace, and the military. Innovative approaches for assessing individuals’ CPS competency are necessary, as traditional assessment types such as multiple -choice items are not well suited for such a process-oriented competency. In a move to computer-based environments to support CPS assessment, innovative computational approaches are also needed to understand individuals’ CPS behaviors. In the current study, we describe the use of a simulation-based task on electronics concepts as an environment for higher education students to display evidence of their CPS competency. We further describe computational linguistic methods for automatically characterizing students’ display of various CPS skills in the task. Comparisons between such an automated approach and an approach based on human annotation to characterize student CPS behaviors revealed above average agreement. These results give credence to the potential for automated approaches to help advance the assessment of CPS and to circumvent the time-intensive human annotation approaches that are typically used in these contexts. |
format | Online Article Text |
id | pubmed-9326529 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93265292022-07-28 Exploring Automated Classification Approaches to Advance the Assessment of Collaborative Problem Solving Skills Andrews-Todd, Jessica Steinberg, Jonathan Flor, Michael Forsyth, Carolyn M. J Intell Article Competency in skills associated with collaborative problem solving (CPS) is critical for many contexts, including school, the workplace, and the military. Innovative approaches for assessing individuals’ CPS competency are necessary, as traditional assessment types such as multiple -choice items are not well suited for such a process-oriented competency. In a move to computer-based environments to support CPS assessment, innovative computational approaches are also needed to understand individuals’ CPS behaviors. In the current study, we describe the use of a simulation-based task on electronics concepts as an environment for higher education students to display evidence of their CPS competency. We further describe computational linguistic methods for automatically characterizing students’ display of various CPS skills in the task. Comparisons between such an automated approach and an approach based on human annotation to characterize student CPS behaviors revealed above average agreement. These results give credence to the potential for automated approaches to help advance the assessment of CPS and to circumvent the time-intensive human annotation approaches that are typically used in these contexts. MDPI 2022-07-04 /pmc/articles/PMC9326529/ /pubmed/35893270 http://dx.doi.org/10.3390/jintelligence10030039 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Andrews-Todd, Jessica Steinberg, Jonathan Flor, Michael Forsyth, Carolyn M. Exploring Automated Classification Approaches to Advance the Assessment of Collaborative Problem Solving Skills |
title | Exploring Automated Classification Approaches to Advance the Assessment of Collaborative Problem Solving Skills |
title_full | Exploring Automated Classification Approaches to Advance the Assessment of Collaborative Problem Solving Skills |
title_fullStr | Exploring Automated Classification Approaches to Advance the Assessment of Collaborative Problem Solving Skills |
title_full_unstemmed | Exploring Automated Classification Approaches to Advance the Assessment of Collaborative Problem Solving Skills |
title_short | Exploring Automated Classification Approaches to Advance the Assessment of Collaborative Problem Solving Skills |
title_sort | exploring automated classification approaches to advance the assessment of collaborative problem solving skills |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9326529/ https://www.ncbi.nlm.nih.gov/pubmed/35893270 http://dx.doi.org/10.3390/jintelligence10030039 |
work_keys_str_mv | AT andrewstoddjessica exploringautomatedclassificationapproachestoadvancetheassessmentofcollaborativeproblemsolvingskills AT steinbergjonathan exploringautomatedclassificationapproachestoadvancetheassessmentofcollaborativeproblemsolvingskills AT flormichael exploringautomatedclassificationapproachestoadvancetheassessmentofcollaborativeproblemsolvingskills AT forsythcarolynm exploringautomatedclassificationapproachestoadvancetheassessmentofcollaborativeproblemsolvingskills |