Cargando…
Missing Value Imputation With Low-Rank Matrix Completion in Single-Cell RNA-Seq Data by Considering Cell Heterogeneity
Single-cell RNA-sequencing (scRNA-seq) technologies enable the measurements of gene expressions in individual cells, which is helpful for exploring cancer heterogeneity and precision medicine. However, various technical noises lead to false zero values (missing gene expression values) in scRNA-seq d...
Autores principales: | Huang, Meng, Ye, Xiucai, Li, Hongmin, Sakurai, Tetsuya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329700/ https://www.ncbi.nlm.nih.gov/pubmed/35910201 http://dx.doi.org/10.3389/fgene.2022.952649 |
Ejemplares similares
-
McImpute: Matrix Completion Based Imputation for Single Cell RNA-seq Data
por: Mongia, Aanchal, et al.
Publicado: (2019) -
Imputing single-cell RNA-seq data by considering cell heterogeneity and prior expression of dropouts
por: Zhang, Lihua, et al.
Publicado: (2020) -
AdImpute: An Imputation Method for Single-Cell RNA-Seq Data Based on Semi-Supervised Autoencoders
por: Xu, Li, et al.
Publicado: (2021) -
ScLRTC: imputation for single-cell RNA-seq data via low-rank tensor completion
por: Pan, Xiutao, et al.
Publicado: (2021) -
ProtRank: bypassing the imputation of missing values in differential expression analysis of proteomic data
por: Medo, Matúš, et al.
Publicado: (2019)