Cargando…
Mapping Transcriptomic Vector Fields of Single Cells
Single-cell (sc)-RNA-seq, together with RNA-velocity and metabolic labeling, reveals cellular states and transitions at unprecedented resolution. Fully exploiting these data, however, requires kinetic models capable of unveiling governing regulatory functions. Here, we introduce an analytical framew...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332140/ https://www.ncbi.nlm.nih.gov/pubmed/35108499 http://dx.doi.org/10.1016/j.cell.2021.12.045 |
_version_ | 1784758573207650304 |
---|---|
author | Qiu, Xiaojie Zhang, Yan Martin-Rufino, Jorge D. Weng, Chen Hosseinzadeh, Shayan Yang, Dian Pogson, Angela N. Hein, Marco Y. Min, Kyung Hoi (Joseph) Wang, Li Grody, Emanuelle I. Shurtleff, Matthew J. Yuan, Ruoshi Xu, Song Ma, Yian Replogle, Joseph M. Lander, Eric S. Darmanis, Spyros Bahar, Ivet Sankaran, Vijay G. Xing, Jianhua Weissman, Jonathan S |
author_facet | Qiu, Xiaojie Zhang, Yan Martin-Rufino, Jorge D. Weng, Chen Hosseinzadeh, Shayan Yang, Dian Pogson, Angela N. Hein, Marco Y. Min, Kyung Hoi (Joseph) Wang, Li Grody, Emanuelle I. Shurtleff, Matthew J. Yuan, Ruoshi Xu, Song Ma, Yian Replogle, Joseph M. Lander, Eric S. Darmanis, Spyros Bahar, Ivet Sankaran, Vijay G. Xing, Jianhua Weissman, Jonathan S |
author_sort | Qiu, Xiaojie |
collection | PubMed |
description | Single-cell (sc)-RNA-seq, together with RNA-velocity and metabolic labeling, reveals cellular states and transitions at unprecedented resolution. Fully exploiting these data, however, requires kinetic models capable of unveiling governing regulatory functions. Here, we introduce an analytical framework dynamo, that infers absolute RNA velocity, reconstructs continuous vector-field functions that predict cell fates, employs differential geometry to extract underlying regulations, and ultimately predicts optimal reprogramming paths and perturbation outcomes. We highlight dynamo’s power to overcome fundamental limitations of conventional splicing-based RNA velocity analyses to enable accurate velocity estimations on a metabolically-labeled human hematopoiesis scRNA-seq dataset. Furthermore, differential geometry analyses reveal mechanisms driving early megakaryocyte appearance and elucidate asymmetrical regulation within the PU.1–GATA1 circuit. Leveraging the Least-Action-Path method, dynamo accurately predicts drivers of numerous hematopoietic transitions. Finally, in silico perturbations predict cell-fate diversions induced by gene perturbations. Dynamo thus represents an important step in advancing quantitative and predictive theories of cell-state transitions. |
format | Online Article Text |
id | pubmed-9332140 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-93321402022-07-28 Mapping Transcriptomic Vector Fields of Single Cells Qiu, Xiaojie Zhang, Yan Martin-Rufino, Jorge D. Weng, Chen Hosseinzadeh, Shayan Yang, Dian Pogson, Angela N. Hein, Marco Y. Min, Kyung Hoi (Joseph) Wang, Li Grody, Emanuelle I. Shurtleff, Matthew J. Yuan, Ruoshi Xu, Song Ma, Yian Replogle, Joseph M. Lander, Eric S. Darmanis, Spyros Bahar, Ivet Sankaran, Vijay G. Xing, Jianhua Weissman, Jonathan S Cell Article Single-cell (sc)-RNA-seq, together with RNA-velocity and metabolic labeling, reveals cellular states and transitions at unprecedented resolution. Fully exploiting these data, however, requires kinetic models capable of unveiling governing regulatory functions. Here, we introduce an analytical framework dynamo, that infers absolute RNA velocity, reconstructs continuous vector-field functions that predict cell fates, employs differential geometry to extract underlying regulations, and ultimately predicts optimal reprogramming paths and perturbation outcomes. We highlight dynamo’s power to overcome fundamental limitations of conventional splicing-based RNA velocity analyses to enable accurate velocity estimations on a metabolically-labeled human hematopoiesis scRNA-seq dataset. Furthermore, differential geometry analyses reveal mechanisms driving early megakaryocyte appearance and elucidate asymmetrical regulation within the PU.1–GATA1 circuit. Leveraging the Least-Action-Path method, dynamo accurately predicts drivers of numerous hematopoietic transitions. Finally, in silico perturbations predict cell-fate diversions induced by gene perturbations. Dynamo thus represents an important step in advancing quantitative and predictive theories of cell-state transitions. 2022-02-17 2022-02-01 /pmc/articles/PMC9332140/ /pubmed/35108499 http://dx.doi.org/10.1016/j.cell.2021.12.045 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License, which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Qiu, Xiaojie Zhang, Yan Martin-Rufino, Jorge D. Weng, Chen Hosseinzadeh, Shayan Yang, Dian Pogson, Angela N. Hein, Marco Y. Min, Kyung Hoi (Joseph) Wang, Li Grody, Emanuelle I. Shurtleff, Matthew J. Yuan, Ruoshi Xu, Song Ma, Yian Replogle, Joseph M. Lander, Eric S. Darmanis, Spyros Bahar, Ivet Sankaran, Vijay G. Xing, Jianhua Weissman, Jonathan S Mapping Transcriptomic Vector Fields of Single Cells |
title | Mapping Transcriptomic Vector Fields of Single Cells |
title_full | Mapping Transcriptomic Vector Fields of Single Cells |
title_fullStr | Mapping Transcriptomic Vector Fields of Single Cells |
title_full_unstemmed | Mapping Transcriptomic Vector Fields of Single Cells |
title_short | Mapping Transcriptomic Vector Fields of Single Cells |
title_sort | mapping transcriptomic vector fields of single cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332140/ https://www.ncbi.nlm.nih.gov/pubmed/35108499 http://dx.doi.org/10.1016/j.cell.2021.12.045 |
work_keys_str_mv | AT qiuxiaojie mappingtranscriptomicvectorfieldsofsinglecells AT zhangyan mappingtranscriptomicvectorfieldsofsinglecells AT martinrufinojorged mappingtranscriptomicvectorfieldsofsinglecells AT wengchen mappingtranscriptomicvectorfieldsofsinglecells AT hosseinzadehshayan mappingtranscriptomicvectorfieldsofsinglecells AT yangdian mappingtranscriptomicvectorfieldsofsinglecells AT pogsonangelan mappingtranscriptomicvectorfieldsofsinglecells AT heinmarcoy mappingtranscriptomicvectorfieldsofsinglecells AT minkyunghoijoseph mappingtranscriptomicvectorfieldsofsinglecells AT wangli mappingtranscriptomicvectorfieldsofsinglecells AT grodyemanuellei mappingtranscriptomicvectorfieldsofsinglecells AT shurtleffmatthewj mappingtranscriptomicvectorfieldsofsinglecells AT yuanruoshi mappingtranscriptomicvectorfieldsofsinglecells AT xusong mappingtranscriptomicvectorfieldsofsinglecells AT mayian mappingtranscriptomicvectorfieldsofsinglecells AT reploglejosephm mappingtranscriptomicvectorfieldsofsinglecells AT landererics mappingtranscriptomicvectorfieldsofsinglecells AT darmanisspyros mappingtranscriptomicvectorfieldsofsinglecells AT baharivet mappingtranscriptomicvectorfieldsofsinglecells AT sankaranvijayg mappingtranscriptomicvectorfieldsofsinglecells AT xingjianhua mappingtranscriptomicvectorfieldsofsinglecells AT weissmanjonathans mappingtranscriptomicvectorfieldsofsinglecells |