Cargando…

Mapping Transcriptomic Vector Fields of Single Cells

Single-cell (sc)-RNA-seq, together with RNA-velocity and metabolic labeling, reveals cellular states and transitions at unprecedented resolution. Fully exploiting these data, however, requires kinetic models capable of unveiling governing regulatory functions. Here, we introduce an analytical framew...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiu, Xiaojie, Zhang, Yan, Martin-Rufino, Jorge D., Weng, Chen, Hosseinzadeh, Shayan, Yang, Dian, Pogson, Angela N., Hein, Marco Y., Min, Kyung Hoi (Joseph), Wang, Li, Grody, Emanuelle I., Shurtleff, Matthew J., Yuan, Ruoshi, Xu, Song, Ma, Yian, Replogle, Joseph M., Lander, Eric S., Darmanis, Spyros, Bahar, Ivet, Sankaran, Vijay G., Xing, Jianhua, Weissman, Jonathan S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332140/
https://www.ncbi.nlm.nih.gov/pubmed/35108499
http://dx.doi.org/10.1016/j.cell.2021.12.045
_version_ 1784758573207650304
author Qiu, Xiaojie
Zhang, Yan
Martin-Rufino, Jorge D.
Weng, Chen
Hosseinzadeh, Shayan
Yang, Dian
Pogson, Angela N.
Hein, Marco Y.
Min, Kyung Hoi (Joseph)
Wang, Li
Grody, Emanuelle I.
Shurtleff, Matthew J.
Yuan, Ruoshi
Xu, Song
Ma, Yian
Replogle, Joseph M.
Lander, Eric S.
Darmanis, Spyros
Bahar, Ivet
Sankaran, Vijay G.
Xing, Jianhua
Weissman, Jonathan S
author_facet Qiu, Xiaojie
Zhang, Yan
Martin-Rufino, Jorge D.
Weng, Chen
Hosseinzadeh, Shayan
Yang, Dian
Pogson, Angela N.
Hein, Marco Y.
Min, Kyung Hoi (Joseph)
Wang, Li
Grody, Emanuelle I.
Shurtleff, Matthew J.
Yuan, Ruoshi
Xu, Song
Ma, Yian
Replogle, Joseph M.
Lander, Eric S.
Darmanis, Spyros
Bahar, Ivet
Sankaran, Vijay G.
Xing, Jianhua
Weissman, Jonathan S
author_sort Qiu, Xiaojie
collection PubMed
description Single-cell (sc)-RNA-seq, together with RNA-velocity and metabolic labeling, reveals cellular states and transitions at unprecedented resolution. Fully exploiting these data, however, requires kinetic models capable of unveiling governing regulatory functions. Here, we introduce an analytical framework dynamo, that infers absolute RNA velocity, reconstructs continuous vector-field functions that predict cell fates, employs differential geometry to extract underlying regulations, and ultimately predicts optimal reprogramming paths and perturbation outcomes. We highlight dynamo’s power to overcome fundamental limitations of conventional splicing-based RNA velocity analyses to enable accurate velocity estimations on a metabolically-labeled human hematopoiesis scRNA-seq dataset. Furthermore, differential geometry analyses reveal mechanisms driving early megakaryocyte appearance and elucidate asymmetrical regulation within the PU.1–GATA1 circuit. Leveraging the Least-Action-Path method, dynamo accurately predicts drivers of numerous hematopoietic transitions. Finally, in silico perturbations predict cell-fate diversions induced by gene perturbations. Dynamo thus represents an important step in advancing quantitative and predictive theories of cell-state transitions.
format Online
Article
Text
id pubmed-9332140
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-93321402022-07-28 Mapping Transcriptomic Vector Fields of Single Cells Qiu, Xiaojie Zhang, Yan Martin-Rufino, Jorge D. Weng, Chen Hosseinzadeh, Shayan Yang, Dian Pogson, Angela N. Hein, Marco Y. Min, Kyung Hoi (Joseph) Wang, Li Grody, Emanuelle I. Shurtleff, Matthew J. Yuan, Ruoshi Xu, Song Ma, Yian Replogle, Joseph M. Lander, Eric S. Darmanis, Spyros Bahar, Ivet Sankaran, Vijay G. Xing, Jianhua Weissman, Jonathan S Cell Article Single-cell (sc)-RNA-seq, together with RNA-velocity and metabolic labeling, reveals cellular states and transitions at unprecedented resolution. Fully exploiting these data, however, requires kinetic models capable of unveiling governing regulatory functions. Here, we introduce an analytical framework dynamo, that infers absolute RNA velocity, reconstructs continuous vector-field functions that predict cell fates, employs differential geometry to extract underlying regulations, and ultimately predicts optimal reprogramming paths and perturbation outcomes. We highlight dynamo’s power to overcome fundamental limitations of conventional splicing-based RNA velocity analyses to enable accurate velocity estimations on a metabolically-labeled human hematopoiesis scRNA-seq dataset. Furthermore, differential geometry analyses reveal mechanisms driving early megakaryocyte appearance and elucidate asymmetrical regulation within the PU.1–GATA1 circuit. Leveraging the Least-Action-Path method, dynamo accurately predicts drivers of numerous hematopoietic transitions. Finally, in silico perturbations predict cell-fate diversions induced by gene perturbations. Dynamo thus represents an important step in advancing quantitative and predictive theories of cell-state transitions. 2022-02-17 2022-02-01 /pmc/articles/PMC9332140/ /pubmed/35108499 http://dx.doi.org/10.1016/j.cell.2021.12.045 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License, which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Qiu, Xiaojie
Zhang, Yan
Martin-Rufino, Jorge D.
Weng, Chen
Hosseinzadeh, Shayan
Yang, Dian
Pogson, Angela N.
Hein, Marco Y.
Min, Kyung Hoi (Joseph)
Wang, Li
Grody, Emanuelle I.
Shurtleff, Matthew J.
Yuan, Ruoshi
Xu, Song
Ma, Yian
Replogle, Joseph M.
Lander, Eric S.
Darmanis, Spyros
Bahar, Ivet
Sankaran, Vijay G.
Xing, Jianhua
Weissman, Jonathan S
Mapping Transcriptomic Vector Fields of Single Cells
title Mapping Transcriptomic Vector Fields of Single Cells
title_full Mapping Transcriptomic Vector Fields of Single Cells
title_fullStr Mapping Transcriptomic Vector Fields of Single Cells
title_full_unstemmed Mapping Transcriptomic Vector Fields of Single Cells
title_short Mapping Transcriptomic Vector Fields of Single Cells
title_sort mapping transcriptomic vector fields of single cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332140/
https://www.ncbi.nlm.nih.gov/pubmed/35108499
http://dx.doi.org/10.1016/j.cell.2021.12.045
work_keys_str_mv AT qiuxiaojie mappingtranscriptomicvectorfieldsofsinglecells
AT zhangyan mappingtranscriptomicvectorfieldsofsinglecells
AT martinrufinojorged mappingtranscriptomicvectorfieldsofsinglecells
AT wengchen mappingtranscriptomicvectorfieldsofsinglecells
AT hosseinzadehshayan mappingtranscriptomicvectorfieldsofsinglecells
AT yangdian mappingtranscriptomicvectorfieldsofsinglecells
AT pogsonangelan mappingtranscriptomicvectorfieldsofsinglecells
AT heinmarcoy mappingtranscriptomicvectorfieldsofsinglecells
AT minkyunghoijoseph mappingtranscriptomicvectorfieldsofsinglecells
AT wangli mappingtranscriptomicvectorfieldsofsinglecells
AT grodyemanuellei mappingtranscriptomicvectorfieldsofsinglecells
AT shurtleffmatthewj mappingtranscriptomicvectorfieldsofsinglecells
AT yuanruoshi mappingtranscriptomicvectorfieldsofsinglecells
AT xusong mappingtranscriptomicvectorfieldsofsinglecells
AT mayian mappingtranscriptomicvectorfieldsofsinglecells
AT reploglejosephm mappingtranscriptomicvectorfieldsofsinglecells
AT landererics mappingtranscriptomicvectorfieldsofsinglecells
AT darmanisspyros mappingtranscriptomicvectorfieldsofsinglecells
AT baharivet mappingtranscriptomicvectorfieldsofsinglecells
AT sankaranvijayg mappingtranscriptomicvectorfieldsofsinglecells
AT xingjianhua mappingtranscriptomicvectorfieldsofsinglecells
AT weissmanjonathans mappingtranscriptomicvectorfieldsofsinglecells