Cargando…
Neuropsychology and MRI correlates of neurodegeneration in SPG11 hereditary spastic paraplegia
BACKGROUND: SPG11-linked hereditary spastic paraplegia is characterized by multisystem neurodegeneration leading to a complex clinical and yet incurable phenotype of progressive spasticity and weakness. Severe cognitive symptoms are present in the majority of SPG11 patients, but a systematic and mul...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9336101/ https://www.ncbi.nlm.nih.gov/pubmed/35906604 http://dx.doi.org/10.1186/s13023-022-02451-1 |
Sumario: | BACKGROUND: SPG11-linked hereditary spastic paraplegia is characterized by multisystem neurodegeneration leading to a complex clinical and yet incurable phenotype of progressive spasticity and weakness. Severe cognitive symptoms are present in the majority of SPG11 patients, but a systematic and multidimensional analysis of the neuropsychological phenotype in a larger cohort is lacking. While thinning of the corpus callosum is a well-known structural hallmark observed in SPG11 patients, the neuroanatomical pattern of cortical degeneration is less understood. We here aimed to integrate neuropsychological and brain morphometric measures in SPG11. METHODS: We examined the neuropsychological profile in 16 SPG11 patients using a defined neuropsychological testing battery. Long-term follow up testing was performed in 7 patients. Cortical and subcortical degeneration was analyzed using an approved, artificial intelligence based magnetic resonance imaging brain morphometry, comparing patients to established reference values and to matched controls. RESULTS: In SPG11 patients, verbal fluency and memory as well as frontal-executive functions were severely impaired. Later disease stages were associated with a global pattern of impairments. Interestingly, reaction times correlated significantly with disease progression. Brain morphometry showed a significant reduction of cortical and subcortical parenchymal volume following a rostro-caudal gradient in SPG11. Whereas performance in memory tasks correlated with white matter damage, verbal fluency measures showed strong associations with frontal and parietal cortical volumes. CONCLUSIONS: The present data will help define neuropsychological and imaging read out parameters in early as well as in advanced clinical stages for future interventional trials in SPG11. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13023-022-02451-1. |
---|