Cargando…
Transcription factor network analysis identifies REST/NRSF as an intrinsic regulator of CNS regeneration in mice
The inability of neurons to regenerate long axons within the CNS is a major impediment to improving outcome after spinal cord injury, stroke, and other CNS insults. Recent advances have uncovered an intrinsic program that involves coordinate regulation by multiple transcription factors that can be m...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338053/ https://www.ncbi.nlm.nih.gov/pubmed/35906210 http://dx.doi.org/10.1038/s41467-022-31960-7 |
_version_ | 1784759884049285120 |
---|---|
author | Cheng, Yuyan Yin, Yuqin Zhang, Alice Bernstein, Alexander M. Kawaguchi, Riki Gao, Kun Potter, Kyra Gilbert, Hui-Ya Ao, Yan Ou, Jing Fricano-Kugler, Catherine J. Goldberg, Jeffrey L. He, Zhigang Woolf, Clifford J. Sofroniew, Michael V. Benowitz, Larry I. Geschwind, Daniel H. |
author_facet | Cheng, Yuyan Yin, Yuqin Zhang, Alice Bernstein, Alexander M. Kawaguchi, Riki Gao, Kun Potter, Kyra Gilbert, Hui-Ya Ao, Yan Ou, Jing Fricano-Kugler, Catherine J. Goldberg, Jeffrey L. He, Zhigang Woolf, Clifford J. Sofroniew, Michael V. Benowitz, Larry I. Geschwind, Daniel H. |
author_sort | Cheng, Yuyan |
collection | PubMed |
description | The inability of neurons to regenerate long axons within the CNS is a major impediment to improving outcome after spinal cord injury, stroke, and other CNS insults. Recent advances have uncovered an intrinsic program that involves coordinate regulation by multiple transcription factors that can be manipulated to enhance growth in the peripheral nervous system. Here, we use a systems genomics approach to characterize regulatory relationships of regeneration-associated transcription factors, identifying RE1-Silencing Transcription Factor (REST; Neuron-Restrictive Silencer Factor, NRSF) as a predicted upstream suppressor of a pro-regenerative gene program associated with axon regeneration in the CNS. We validate our predictions using multiple paradigms, showing that mature mice bearing cell type-specific deletions of REST or expressing dominant-negative mutant REST show improved regeneration of the corticospinal tract and optic nerve after spinal cord injury and optic nerve crush, which is accompanied by upregulation of regeneration-associated genes in cortical motor neurons and retinal ganglion cells, respectively. These analyses identify a role for REST as an upstream suppressor of the intrinsic regenerative program in the CNS and demonstrate the utility of a systems biology approach involving integrative genomics and bio-informatics to prioritize hypotheses relevant to CNS repair. |
format | Online Article Text |
id | pubmed-9338053 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-93380532022-07-31 Transcription factor network analysis identifies REST/NRSF as an intrinsic regulator of CNS regeneration in mice Cheng, Yuyan Yin, Yuqin Zhang, Alice Bernstein, Alexander M. Kawaguchi, Riki Gao, Kun Potter, Kyra Gilbert, Hui-Ya Ao, Yan Ou, Jing Fricano-Kugler, Catherine J. Goldberg, Jeffrey L. He, Zhigang Woolf, Clifford J. Sofroniew, Michael V. Benowitz, Larry I. Geschwind, Daniel H. Nat Commun Article The inability of neurons to regenerate long axons within the CNS is a major impediment to improving outcome after spinal cord injury, stroke, and other CNS insults. Recent advances have uncovered an intrinsic program that involves coordinate regulation by multiple transcription factors that can be manipulated to enhance growth in the peripheral nervous system. Here, we use a systems genomics approach to characterize regulatory relationships of regeneration-associated transcription factors, identifying RE1-Silencing Transcription Factor (REST; Neuron-Restrictive Silencer Factor, NRSF) as a predicted upstream suppressor of a pro-regenerative gene program associated with axon regeneration in the CNS. We validate our predictions using multiple paradigms, showing that mature mice bearing cell type-specific deletions of REST or expressing dominant-negative mutant REST show improved regeneration of the corticospinal tract and optic nerve after spinal cord injury and optic nerve crush, which is accompanied by upregulation of regeneration-associated genes in cortical motor neurons and retinal ganglion cells, respectively. These analyses identify a role for REST as an upstream suppressor of the intrinsic regenerative program in the CNS and demonstrate the utility of a systems biology approach involving integrative genomics and bio-informatics to prioritize hypotheses relevant to CNS repair. Nature Publishing Group UK 2022-07-29 /pmc/articles/PMC9338053/ /pubmed/35906210 http://dx.doi.org/10.1038/s41467-022-31960-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Cheng, Yuyan Yin, Yuqin Zhang, Alice Bernstein, Alexander M. Kawaguchi, Riki Gao, Kun Potter, Kyra Gilbert, Hui-Ya Ao, Yan Ou, Jing Fricano-Kugler, Catherine J. Goldberg, Jeffrey L. He, Zhigang Woolf, Clifford J. Sofroniew, Michael V. Benowitz, Larry I. Geschwind, Daniel H. Transcription factor network analysis identifies REST/NRSF as an intrinsic regulator of CNS regeneration in mice |
title | Transcription factor network analysis identifies REST/NRSF as an intrinsic regulator of CNS regeneration in mice |
title_full | Transcription factor network analysis identifies REST/NRSF as an intrinsic regulator of CNS regeneration in mice |
title_fullStr | Transcription factor network analysis identifies REST/NRSF as an intrinsic regulator of CNS regeneration in mice |
title_full_unstemmed | Transcription factor network analysis identifies REST/NRSF as an intrinsic regulator of CNS regeneration in mice |
title_short | Transcription factor network analysis identifies REST/NRSF as an intrinsic regulator of CNS regeneration in mice |
title_sort | transcription factor network analysis identifies rest/nrsf as an intrinsic regulator of cns regeneration in mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338053/ https://www.ncbi.nlm.nih.gov/pubmed/35906210 http://dx.doi.org/10.1038/s41467-022-31960-7 |
work_keys_str_mv | AT chengyuyan transcriptionfactornetworkanalysisidentifiesrestnrsfasanintrinsicregulatorofcnsregenerationinmice AT yinyuqin transcriptionfactornetworkanalysisidentifiesrestnrsfasanintrinsicregulatorofcnsregenerationinmice AT zhangalice transcriptionfactornetworkanalysisidentifiesrestnrsfasanintrinsicregulatorofcnsregenerationinmice AT bernsteinalexanderm transcriptionfactornetworkanalysisidentifiesrestnrsfasanintrinsicregulatorofcnsregenerationinmice AT kawaguchiriki transcriptionfactornetworkanalysisidentifiesrestnrsfasanintrinsicregulatorofcnsregenerationinmice AT gaokun transcriptionfactornetworkanalysisidentifiesrestnrsfasanintrinsicregulatorofcnsregenerationinmice AT potterkyra transcriptionfactornetworkanalysisidentifiesrestnrsfasanintrinsicregulatorofcnsregenerationinmice AT gilberthuiya transcriptionfactornetworkanalysisidentifiesrestnrsfasanintrinsicregulatorofcnsregenerationinmice AT aoyan transcriptionfactornetworkanalysisidentifiesrestnrsfasanintrinsicregulatorofcnsregenerationinmice AT oujing transcriptionfactornetworkanalysisidentifiesrestnrsfasanintrinsicregulatorofcnsregenerationinmice AT fricanokuglercatherinej transcriptionfactornetworkanalysisidentifiesrestnrsfasanintrinsicregulatorofcnsregenerationinmice AT goldbergjeffreyl transcriptionfactornetworkanalysisidentifiesrestnrsfasanintrinsicregulatorofcnsregenerationinmice AT hezhigang transcriptionfactornetworkanalysisidentifiesrestnrsfasanintrinsicregulatorofcnsregenerationinmice AT woolfcliffordj transcriptionfactornetworkanalysisidentifiesrestnrsfasanintrinsicregulatorofcnsregenerationinmice AT sofroniewmichaelv transcriptionfactornetworkanalysisidentifiesrestnrsfasanintrinsicregulatorofcnsregenerationinmice AT benowitzlarryi transcriptionfactornetworkanalysisidentifiesrestnrsfasanintrinsicregulatorofcnsregenerationinmice AT geschwinddanielh transcriptionfactornetworkanalysisidentifiesrestnrsfasanintrinsicregulatorofcnsregenerationinmice |