Cargando…
Locating critical events in AFM force measurements by means of one-dimensional convolutional neural networks
Atomic Force Microscopy (AFM) force measurements are a powerful tool for the nano-scale characterization of surface properties. However, the analysis of force measurements requires several processing steps. One is locating different type of events e.g., contact point, adhesions and indentations. At...
Autores principales: | Sotres, Javier, Boyd, Hannah, Gonzalez-Martinez, Juan F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338096/ https://www.ncbi.nlm.nih.gov/pubmed/35906466 http://dx.doi.org/10.1038/s41598-022-17124-z |
Ejemplares similares
-
Bioluminescence Tomography Based on One-Dimensional Convolutional Neural Networks
por: Yu, Jingjing, et al.
Publicado: (2021) -
Characterisation of tissue factor-bearing extracellular vesicles with AFM: comparison of air-tapping-mode AFM and liquid Peak Force AFM
por: Hardij, Julie, et al.
Publicado: (2013) -
A Novel Multivariate Cutting Force-Based Tool Wear Monitoring Method Using One-Dimensional Convolutional Neural Network
por: Yang, Xu, et al.
Publicado: (2022) -
Convolutional neural network for earthquake detection and location
por: Perol, Thibaut, et al.
Publicado: (2018) -
Component Analysis of Gas Mixture Based on One-Dimensional Convolutional Neural Network
por: Zhan, Canjian, et al.
Publicado: (2021)