Cargando…

Knockout of integrin β1 in induced pluripotent stem cells accelerates skin-wound healing by promoting cell migration in extracellular matrix

BACKGROUND: Induced pluripotent stem cells (iPSCs) have the potential to promote wound healing; however, their adhesion to the extracellular matrix (ECM) might decrease iPSC migration, thereby limiting their therapeutic potential. Integrin β1 (Itgb1) is the major integrin subunit that mediates iPSC-...

Descripción completa

Detalles Bibliográficos
Autores principales: Ren, Yansong, Liu, Jinbo, Xu, Huijun, Wang, Shun, Li, Shirui, Xiang, Meng, Chen, Sifeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338467/
https://www.ncbi.nlm.nih.gov/pubmed/35908001
http://dx.doi.org/10.1186/s13287-022-03085-7
Descripción
Sumario:BACKGROUND: Induced pluripotent stem cells (iPSCs) have the potential to promote wound healing; however, their adhesion to the extracellular matrix (ECM) might decrease iPSC migration, thereby limiting their therapeutic potential. Integrin β1 (Itgb1) is the major integrin subunit that mediates iPSC-ECM adhesion, suggesting that knocking out Itgb1 might be an effective method for enhancing the therapeutic efficacy of iPSCs. METHODS: We knocked out Itgb1 in mouse iPSCs and evaluated its effects on the therapeutic potential of topically applied iPSCs, as well as their underlying in vivo and in vitro mechanisms. RESULTS: The Itgb1-knockout (Itgb1-KO) did not change iPSC pluripotency, function, or survival in the absence of embedding in an ECM gel but did accelerate wound healing, angiogenesis, blood perfusion, and survival in skin-wound lesions. However, embedding in an ECM gel inhibited the in vivo effects of wild-type iPSCs but not those of Itgb1-knockout iPSCs. Additionally, in vitro results showed that Itgb1-knockout decreased iPSC-ECM adhesion while increasing ECM-crossing migration. Moreover, ECM coating on the culture surface did not change cell survival, regardless of Itgb1 status; however, the in vivo and in vitro functions of both Itgb1-knockout and wild-type iPSCs were not affected by the presence of agarose gel, which does not contain integrin-binding sites. Knockout of Integrin α4 (Itga4) did not change the above-mentioned cellular and therapeutic functions of iPSCs. CONCLUSIONS: Itgb1-knockout increased iPSCs migration and the wound-healing-promoting effect of topically applied iPSCs. These findings suggest the inhibition of Itgb1 expression is a possible strategy for increasing the efficacy of iPSC therapies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13287-022-03085-7.