Cargando…

Somatic retrotransposition in the developing rhesus macaque brain

The retrotransposon LINE-1 (L1) is central to the recent evolutionary history of the human genome and continues to drive genetic diversity and germline pathogenesis. However, the spatiotemporal extent and biological significance of somatic L1 activity are poorly defined and are virtually unexplored...

Descripción completa

Detalles Bibliográficos
Autores principales: Billon, Victor, Sanchez-Luque, Francisco J., Rasmussen, Jay, Bodea, Gabriela O., Gerhardt, Daniel J., Gerdes, Patricia, Cheetham, Seth W., Schauer, Stephanie N., Ajjikuttira, Prabha, Meyer, Thomas J., Layman, Cora E., Nevonen, Kimberly A., Jansz, Natasha, Garcia-Perez, Jose L., Richardson, Sandra R., Ewing, Adam D., Carbone, Lucia, Faulkner, Geoffrey J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9341517/
https://www.ncbi.nlm.nih.gov/pubmed/35728967
http://dx.doi.org/10.1101/gr.276451.121
_version_ 1784760625022369792
author Billon, Victor
Sanchez-Luque, Francisco J.
Rasmussen, Jay
Bodea, Gabriela O.
Gerhardt, Daniel J.
Gerdes, Patricia
Cheetham, Seth W.
Schauer, Stephanie N.
Ajjikuttira, Prabha
Meyer, Thomas J.
Layman, Cora E.
Nevonen, Kimberly A.
Jansz, Natasha
Garcia-Perez, Jose L.
Richardson, Sandra R.
Ewing, Adam D.
Carbone, Lucia
Faulkner, Geoffrey J.
author_facet Billon, Victor
Sanchez-Luque, Francisco J.
Rasmussen, Jay
Bodea, Gabriela O.
Gerhardt, Daniel J.
Gerdes, Patricia
Cheetham, Seth W.
Schauer, Stephanie N.
Ajjikuttira, Prabha
Meyer, Thomas J.
Layman, Cora E.
Nevonen, Kimberly A.
Jansz, Natasha
Garcia-Perez, Jose L.
Richardson, Sandra R.
Ewing, Adam D.
Carbone, Lucia
Faulkner, Geoffrey J.
author_sort Billon, Victor
collection PubMed
description The retrotransposon LINE-1 (L1) is central to the recent evolutionary history of the human genome and continues to drive genetic diversity and germline pathogenesis. However, the spatiotemporal extent and biological significance of somatic L1 activity are poorly defined and are virtually unexplored in other primates. From a single L1 lineage active at the divergence of apes and Old World monkeys, successive L1 subfamilies have emerged in each descendant primate germline. As revealed by case studies, the presently active human L1 subfamily can also mobilize during embryonic and brain development in vivo. It is unknown whether nonhuman primate L1s can similarly generate somatic insertions in the brain. Here we applied approximately 40× single-cell whole-genome sequencing (scWGS), as well as retrotransposon capture sequencing (RC-seq), to 20 hippocampal neurons from two rhesus macaques (Macaca mulatta). In one animal, we detected and PCR-validated a somatic L1 insertion that generated target site duplications, carried a short 5′ transduction, and was present in ∼7% of hippocampal neurons but absent from cerebellum and nonbrain tissues. The corresponding donor L1 allele was exceptionally mobile in vitro and was embedded in PRDM4, a gene expressed throughout development and in neural stem cells. Nanopore long-read methylome and RNA-seq transcriptome analyses indicated young retrotransposon subfamily activation in the early embryo, followed by repression in adult tissues. These data highlight endogenous macaque L1 retrotransposition potential, provide prototypical evidence of L1-mediated somatic mosaicism in a nonhuman primate, and allude to L1 mobility in the brain over the past 30 million years of human evolution.
format Online
Article
Text
id pubmed-9341517
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Cold Spring Harbor Laboratory Press
record_format MEDLINE/PubMed
spelling pubmed-93415172022-08-16 Somatic retrotransposition in the developing rhesus macaque brain Billon, Victor Sanchez-Luque, Francisco J. Rasmussen, Jay Bodea, Gabriela O. Gerhardt, Daniel J. Gerdes, Patricia Cheetham, Seth W. Schauer, Stephanie N. Ajjikuttira, Prabha Meyer, Thomas J. Layman, Cora E. Nevonen, Kimberly A. Jansz, Natasha Garcia-Perez, Jose L. Richardson, Sandra R. Ewing, Adam D. Carbone, Lucia Faulkner, Geoffrey J. Genome Res Research The retrotransposon LINE-1 (L1) is central to the recent evolutionary history of the human genome and continues to drive genetic diversity and germline pathogenesis. However, the spatiotemporal extent and biological significance of somatic L1 activity are poorly defined and are virtually unexplored in other primates. From a single L1 lineage active at the divergence of apes and Old World monkeys, successive L1 subfamilies have emerged in each descendant primate germline. As revealed by case studies, the presently active human L1 subfamily can also mobilize during embryonic and brain development in vivo. It is unknown whether nonhuman primate L1s can similarly generate somatic insertions in the brain. Here we applied approximately 40× single-cell whole-genome sequencing (scWGS), as well as retrotransposon capture sequencing (RC-seq), to 20 hippocampal neurons from two rhesus macaques (Macaca mulatta). In one animal, we detected and PCR-validated a somatic L1 insertion that generated target site duplications, carried a short 5′ transduction, and was present in ∼7% of hippocampal neurons but absent from cerebellum and nonbrain tissues. The corresponding donor L1 allele was exceptionally mobile in vitro and was embedded in PRDM4, a gene expressed throughout development and in neural stem cells. Nanopore long-read methylome and RNA-seq transcriptome analyses indicated young retrotransposon subfamily activation in the early embryo, followed by repression in adult tissues. These data highlight endogenous macaque L1 retrotransposition potential, provide prototypical evidence of L1-mediated somatic mosaicism in a nonhuman primate, and allude to L1 mobility in the brain over the past 30 million years of human evolution. Cold Spring Harbor Laboratory Press 2022-07 /pmc/articles/PMC9341517/ /pubmed/35728967 http://dx.doi.org/10.1101/gr.276451.121 Text en © 2022 Billon et al.; Published by Cold Spring Harbor Laboratory Press https://creativecommons.org/licenses/by-nc/4.0/This article, published in Genome Research, is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) .
spellingShingle Research
Billon, Victor
Sanchez-Luque, Francisco J.
Rasmussen, Jay
Bodea, Gabriela O.
Gerhardt, Daniel J.
Gerdes, Patricia
Cheetham, Seth W.
Schauer, Stephanie N.
Ajjikuttira, Prabha
Meyer, Thomas J.
Layman, Cora E.
Nevonen, Kimberly A.
Jansz, Natasha
Garcia-Perez, Jose L.
Richardson, Sandra R.
Ewing, Adam D.
Carbone, Lucia
Faulkner, Geoffrey J.
Somatic retrotransposition in the developing rhesus macaque brain
title Somatic retrotransposition in the developing rhesus macaque brain
title_full Somatic retrotransposition in the developing rhesus macaque brain
title_fullStr Somatic retrotransposition in the developing rhesus macaque brain
title_full_unstemmed Somatic retrotransposition in the developing rhesus macaque brain
title_short Somatic retrotransposition in the developing rhesus macaque brain
title_sort somatic retrotransposition in the developing rhesus macaque brain
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9341517/
https://www.ncbi.nlm.nih.gov/pubmed/35728967
http://dx.doi.org/10.1101/gr.276451.121
work_keys_str_mv AT billonvictor somaticretrotranspositioninthedevelopingrhesusmacaquebrain
AT sanchezluquefranciscoj somaticretrotranspositioninthedevelopingrhesusmacaquebrain
AT rasmussenjay somaticretrotranspositioninthedevelopingrhesusmacaquebrain
AT bodeagabrielao somaticretrotranspositioninthedevelopingrhesusmacaquebrain
AT gerhardtdanielj somaticretrotranspositioninthedevelopingrhesusmacaquebrain
AT gerdespatricia somaticretrotranspositioninthedevelopingrhesusmacaquebrain
AT cheethamsethw somaticretrotranspositioninthedevelopingrhesusmacaquebrain
AT schauerstephanien somaticretrotranspositioninthedevelopingrhesusmacaquebrain
AT ajjikuttiraprabha somaticretrotranspositioninthedevelopingrhesusmacaquebrain
AT meyerthomasj somaticretrotranspositioninthedevelopingrhesusmacaquebrain
AT laymancorae somaticretrotranspositioninthedevelopingrhesusmacaquebrain
AT nevonenkimberlya somaticretrotranspositioninthedevelopingrhesusmacaquebrain
AT jansznatasha somaticretrotranspositioninthedevelopingrhesusmacaquebrain
AT garciaperezjosel somaticretrotranspositioninthedevelopingrhesusmacaquebrain
AT richardsonsandrar somaticretrotranspositioninthedevelopingrhesusmacaquebrain
AT ewingadamd somaticretrotranspositioninthedevelopingrhesusmacaquebrain
AT carbonelucia somaticretrotranspositioninthedevelopingrhesusmacaquebrain
AT faulknergeoffreyj somaticretrotranspositioninthedevelopingrhesusmacaquebrain