Cargando…

Prediction of atomic stress fields using cycle-consistent adversarial neural networks based on unpaired and unmatched sparse datasets

Deep learning holds great promise for applications in materials science, including the discovery of physical laws and materials design. However, the availability of proper data remains a challenge – often, data lacks labels, or does not contain direct pairing between input and output property of int...

Descripción completa

Detalles Bibliográficos
Autor principal: Buehler, Markus J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9342674/
https://www.ncbi.nlm.nih.gov/pubmed/35979503
http://dx.doi.org/10.1039/d2ma00223j