Cargando…
Prediction of atomic stress fields using cycle-consistent adversarial neural networks based on unpaired and unmatched sparse datasets
Deep learning holds great promise for applications in materials science, including the discovery of physical laws and materials design. However, the availability of proper data remains a challenge – often, data lacks labels, or does not contain direct pairing between input and output property of int...
Autor principal: | Buehler, Markus J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9342674/ https://www.ncbi.nlm.nih.gov/pubmed/35979503 http://dx.doi.org/10.1039/d2ma00223j |
Ejemplares similares
-
Correction to: Unpaired Image-to-Image Translation Using Adversarial Consistency Loss
por: Zhao, Yihao, et al.
Publicado: (2021) -
A selective kernel-based cycle-consistent generative adversarial network for unpaired low-dose CT denoising
por: Tan, Chaoqun, et al.
Publicado: (2022) -
Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information
por: Tang, Chao, et al.
Publicado: (2019) -
Path Generator with Unpaired Samples Employing Generative Adversarial Networks
por: Maldonado-Romo, Javier, et al.
Publicado: (2022) -
Super-Resolving Methodology for Noisy Unpaired Datasets
por: Min, Sung-Jun, et al.
Publicado: (2022)