Cargando…
A deep learning framework for identifying essential proteins based on multiple biological information
BACKGROUND: Essential Proteins are demonstrated to exert vital functions on cellular processes and are indispensable for the survival and reproduction of the organism. Traditional centrality methods perform poorly on complex protein–protein interaction (PPI) networks. Machine learning approaches bas...
Autores principales: | Yue, Yi, Ye, Chen, Peng, Pei-Yun, Zhai, Hui-Xin, Ahmad, Iftikhar, Xia, Chuan, Wu, Yun-Zhi, Zhang, You-Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9351218/ https://www.ncbi.nlm.nih.gov/pubmed/35927611 http://dx.doi.org/10.1186/s12859-022-04868-8 |
Ejemplares similares
-
DeepEP: a deep learning framework for identifying essential proteins
por: Zeng, Min, et al.
Publicado: (2019) -
An ensemble framework for identifying essential proteins
por: Zhang, Xue, et al.
Publicado: (2016) -
GNE: a deep learning framework for gene network inference by aggregating biological information
por: KC, Kishan, et al.
Publicado: (2019) -
GSPHI: A novel deep learning model for predicting phage-host interactions via multiple biological information
por: Pan, Jie, et al.
Publicado: (2023) -
An iteration model for identifying essential proteins by combining comprehensive PPI network with biological information
por: Li, Shiyuan, et al.
Publicado: (2021)