Cargando…

Single-cell transcriptomics of staged oocytes and somatic cells reveal novel regulators of follicle activation

IN BRIEF: Proper development of ovarian follicles, comprised of an oocyte and surrounding somatic cells, is essential to support female fertility and endocrine health. Here, we describe a method to isolate single oocytes and somatic cells from the earliest stage follicles, called primordial follicle...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yu-Ying, Russo, Daniela D, Drake, Riley S, Duncan, Francesca E, Shalek, Alex K, Goods, Brittany A, Woodruff, Teresa K
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bioscientifica Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354060/
https://www.ncbi.nlm.nih.gov/pubmed/35899878
http://dx.doi.org/10.1530/REP-22-0053
_version_ 1784762980877991936
author Chen, Yu-Ying
Russo, Daniela D
Drake, Riley S
Duncan, Francesca E
Shalek, Alex K
Goods, Brittany A
Woodruff, Teresa K
author_facet Chen, Yu-Ying
Russo, Daniela D
Drake, Riley S
Duncan, Francesca E
Shalek, Alex K
Goods, Brittany A
Woodruff, Teresa K
author_sort Chen, Yu-Ying
collection PubMed
description IN BRIEF: Proper development of ovarian follicles, comprised of an oocyte and surrounding somatic cells, is essential to support female fertility and endocrine health. Here, we describe a method to isolate single oocytes and somatic cells from the earliest stage follicles, called primordial follicles, and we characterize signals that drive their activation. ABSTRACT: Primordial follicles are the first class of follicles formed in the mammalian ovary and are comprised of an oocyte surrounded by a layer of squamous pre-granulosa cells. This developmental class remains in a non-growing state until individual follicles activate to initiate folliculogenesis. What regulates the timing of follicle activation and the upstream signals that govern these processes are major unanswered questions in ovarian biology. This is partly due to the paucity of data on staged follicle cells since isolating and manipulating individual oocytes and somatic cells from early follicle stages are challenging. To date, most studies on isolated primordial follicles have been conducted on cells collected from animal-age- or oocyte size-specific samples, which encompass multiple follicular stages. Here, we report a method for collecting primordial follicles and their associated oocytes and somatic cells from neonatal murine ovaries using liberase, DNase I, and Accutase. This methodology allows for the identification and collection of follicles immediately post-activation enabling unprecedented interrogation of the primordial-to-primary follicle transition. Molecular profiling by single-cell RNA sequencing revealed that processes including organelle disassembly and cadherin binding were enriched in oocytes and somatic cells as they transitioned from primordial to the primary follicle stage. Furthermore, targets including WNT4, TGFB1, FOXO3, and a network of transcription factors were identified in the transitioning oocytes and somatic cells as potential upstream regulators that collectively may drive follicle activation. Taken together, we have developed a more precise characterization and selection method for studying staged-follicle cells, revealing several novel regulators of early folliculogenesis.
format Online
Article
Text
id pubmed-9354060
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Bioscientifica Ltd
record_format MEDLINE/PubMed
spelling pubmed-93540602022-08-09 Single-cell transcriptomics of staged oocytes and somatic cells reveal novel regulators of follicle activation Chen, Yu-Ying Russo, Daniela D Drake, Riley S Duncan, Francesca E Shalek, Alex K Goods, Brittany A Woodruff, Teresa K Reproduction Research IN BRIEF: Proper development of ovarian follicles, comprised of an oocyte and surrounding somatic cells, is essential to support female fertility and endocrine health. Here, we describe a method to isolate single oocytes and somatic cells from the earliest stage follicles, called primordial follicles, and we characterize signals that drive their activation. ABSTRACT: Primordial follicles are the first class of follicles formed in the mammalian ovary and are comprised of an oocyte surrounded by a layer of squamous pre-granulosa cells. This developmental class remains in a non-growing state until individual follicles activate to initiate folliculogenesis. What regulates the timing of follicle activation and the upstream signals that govern these processes are major unanswered questions in ovarian biology. This is partly due to the paucity of data on staged follicle cells since isolating and manipulating individual oocytes and somatic cells from early follicle stages are challenging. To date, most studies on isolated primordial follicles have been conducted on cells collected from animal-age- or oocyte size-specific samples, which encompass multiple follicular stages. Here, we report a method for collecting primordial follicles and their associated oocytes and somatic cells from neonatal murine ovaries using liberase, DNase I, and Accutase. This methodology allows for the identification and collection of follicles immediately post-activation enabling unprecedented interrogation of the primordial-to-primary follicle transition. Molecular profiling by single-cell RNA sequencing revealed that processes including organelle disassembly and cadherin binding were enriched in oocytes and somatic cells as they transitioned from primordial to the primary follicle stage. Furthermore, targets including WNT4, TGFB1, FOXO3, and a network of transcription factors were identified in the transitioning oocytes and somatic cells as potential upstream regulators that collectively may drive follicle activation. Taken together, we have developed a more precise characterization and selection method for studying staged-follicle cells, revealing several novel regulators of early folliculogenesis. Bioscientifica Ltd 2022-06-17 /pmc/articles/PMC9354060/ /pubmed/35899878 http://dx.doi.org/10.1530/REP-22-0053 Text en © The authors https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License. (https://creativecommons.org/licenses/by/4.0/)
spellingShingle Research
Chen, Yu-Ying
Russo, Daniela D
Drake, Riley S
Duncan, Francesca E
Shalek, Alex K
Goods, Brittany A
Woodruff, Teresa K
Single-cell transcriptomics of staged oocytes and somatic cells reveal novel regulators of follicle activation
title Single-cell transcriptomics of staged oocytes and somatic cells reveal novel regulators of follicle activation
title_full Single-cell transcriptomics of staged oocytes and somatic cells reveal novel regulators of follicle activation
title_fullStr Single-cell transcriptomics of staged oocytes and somatic cells reveal novel regulators of follicle activation
title_full_unstemmed Single-cell transcriptomics of staged oocytes and somatic cells reveal novel regulators of follicle activation
title_short Single-cell transcriptomics of staged oocytes and somatic cells reveal novel regulators of follicle activation
title_sort single-cell transcriptomics of staged oocytes and somatic cells reveal novel regulators of follicle activation
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354060/
https://www.ncbi.nlm.nih.gov/pubmed/35899878
http://dx.doi.org/10.1530/REP-22-0053
work_keys_str_mv AT chenyuying singlecelltranscriptomicsofstagedoocytesandsomaticcellsrevealnovelregulatorsoffollicleactivation
AT russodanielad singlecelltranscriptomicsofstagedoocytesandsomaticcellsrevealnovelregulatorsoffollicleactivation
AT drakerileys singlecelltranscriptomicsofstagedoocytesandsomaticcellsrevealnovelregulatorsoffollicleactivation
AT duncanfrancescae singlecelltranscriptomicsofstagedoocytesandsomaticcellsrevealnovelregulatorsoffollicleactivation
AT shalekalexk singlecelltranscriptomicsofstagedoocytesandsomaticcellsrevealnovelregulatorsoffollicleactivation
AT goodsbrittanya singlecelltranscriptomicsofstagedoocytesandsomaticcellsrevealnovelregulatorsoffollicleactivation
AT woodruffteresak singlecelltranscriptomicsofstagedoocytesandsomaticcellsrevealnovelregulatorsoffollicleactivation