Cargando…

Imaging biological macromolecules in thick specimens: The role of inelastic scattering in cryoEM

We investigate potential improvements in using electron cryomicroscopy to image thick specimens with high-resolution phase contrast imaging. In particular, using model experiments, electron scattering theory, Monte Carlo and multislice simulations, we determine the potential for improving electron c...

Descripción completa

Detalles Bibliográficos
Autores principales: Dickerson, Joshua L., Lu, Peng-Han, Hristov, Dilyan, Dunin-Borkowski, Rafal E., Russo, Christopher J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355893/
https://www.ncbi.nlm.nih.gov/pubmed/35367900
http://dx.doi.org/10.1016/j.ultramic.2022.113510
_version_ 1784763396667736064
author Dickerson, Joshua L.
Lu, Peng-Han
Hristov, Dilyan
Dunin-Borkowski, Rafal E.
Russo, Christopher J.
author_facet Dickerson, Joshua L.
Lu, Peng-Han
Hristov, Dilyan
Dunin-Borkowski, Rafal E.
Russo, Christopher J.
author_sort Dickerson, Joshua L.
collection PubMed
description We investigate potential improvements in using electron cryomicroscopy to image thick specimens with high-resolution phase contrast imaging. In particular, using model experiments, electron scattering theory, Monte Carlo and multislice simulations, we determine the potential for improving electron cryomicrographs of proteins within a cell using chromatic aberration ([Formula: see text]) correction. We show that inelastically scattered electrons lose a quantifiable amount of spatial coherence as they transit the specimen, yet can be used to enhance the signal from thick biological specimens (in the 1000 to 5000 Å range) provided they are imaged close to focus with an achromatic lens. This loss of information quantified here, which we call “specimen induced decoherence”, is a fundamental limit on imaging biological molecules in situ. We further show that with foreseeable advances in transmission electron microscope technology, it should be possible to directly locate and uniquely identify sub-100 kDa proteins without the need for labels, in a vitrified specimen taken from a cell.
format Online
Article
Text
id pubmed-9355893
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-93558932022-08-09 Imaging biological macromolecules in thick specimens: The role of inelastic scattering in cryoEM Dickerson, Joshua L. Lu, Peng-Han Hristov, Dilyan Dunin-Borkowski, Rafal E. Russo, Christopher J. Ultramicroscopy Article We investigate potential improvements in using electron cryomicroscopy to image thick specimens with high-resolution phase contrast imaging. In particular, using model experiments, electron scattering theory, Monte Carlo and multislice simulations, we determine the potential for improving electron cryomicrographs of proteins within a cell using chromatic aberration ([Formula: see text]) correction. We show that inelastically scattered electrons lose a quantifiable amount of spatial coherence as they transit the specimen, yet can be used to enhance the signal from thick biological specimens (in the 1000 to 5000 Å range) provided they are imaged close to focus with an achromatic lens. This loss of information quantified here, which we call “specimen induced decoherence”, is a fundamental limit on imaging biological molecules in situ. We further show that with foreseeable advances in transmission electron microscope technology, it should be possible to directly locate and uniquely identify sub-100 kDa proteins without the need for labels, in a vitrified specimen taken from a cell. Elsevier 2022-07 /pmc/articles/PMC9355893/ /pubmed/35367900 http://dx.doi.org/10.1016/j.ultramic.2022.113510 Text en © 2022 MRC Laboratory of Molecular Biology https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Dickerson, Joshua L.
Lu, Peng-Han
Hristov, Dilyan
Dunin-Borkowski, Rafal E.
Russo, Christopher J.
Imaging biological macromolecules in thick specimens: The role of inelastic scattering in cryoEM
title Imaging biological macromolecules in thick specimens: The role of inelastic scattering in cryoEM
title_full Imaging biological macromolecules in thick specimens: The role of inelastic scattering in cryoEM
title_fullStr Imaging biological macromolecules in thick specimens: The role of inelastic scattering in cryoEM
title_full_unstemmed Imaging biological macromolecules in thick specimens: The role of inelastic scattering in cryoEM
title_short Imaging biological macromolecules in thick specimens: The role of inelastic scattering in cryoEM
title_sort imaging biological macromolecules in thick specimens: the role of inelastic scattering in cryoem
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355893/
https://www.ncbi.nlm.nih.gov/pubmed/35367900
http://dx.doi.org/10.1016/j.ultramic.2022.113510
work_keys_str_mv AT dickersonjoshual imagingbiologicalmacromoleculesinthickspecimenstheroleofinelasticscatteringincryoem
AT lupenghan imagingbiologicalmacromoleculesinthickspecimenstheroleofinelasticscatteringincryoem
AT hristovdilyan imagingbiologicalmacromoleculesinthickspecimenstheroleofinelasticscatteringincryoem
AT duninborkowskirafale imagingbiologicalmacromoleculesinthickspecimenstheroleofinelasticscatteringincryoem
AT russochristopherj imagingbiologicalmacromoleculesinthickspecimenstheroleofinelasticscatteringincryoem