Cargando…

Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD)

Computational protocols for cell type deconvolution from bulk RNA-seq data have been used to understand cellular heterogeneity in disease-related samples, but their performance can be impacted by batch effect among datasets. Here, we present a DAISM-DNN protocol to achieve robust cell type proportio...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Yating, Wu, Shangze, Xiao, Xu, Zhao, Jingbo, Wang, Minshu, Li, Haojun, Wang, Kejia, Zhang, Minwei, Zheng, Frank, Yang, Wenxian, Zhang, Lei, Han, Jiahuai, Yu, Rongshan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356155/
https://www.ncbi.nlm.nih.gov/pubmed/35942344
http://dx.doi.org/10.1016/j.xpro.2022.101587
_version_ 1784763454015406080
author Lin, Yating
Wu, Shangze
Xiao, Xu
Zhao, Jingbo
Wang, Minshu
Li, Haojun
Wang, Kejia
Zhang, Minwei
Zheng, Frank
Yang, Wenxian
Zhang, Lei
Han, Jiahuai
Yu, Rongshan
author_facet Lin, Yating
Wu, Shangze
Xiao, Xu
Zhao, Jingbo
Wang, Minshu
Li, Haojun
Wang, Kejia
Zhang, Minwei
Zheng, Frank
Yang, Wenxian
Zhang, Lei
Han, Jiahuai
Yu, Rongshan
author_sort Lin, Yating
collection PubMed
description Computational protocols for cell type deconvolution from bulk RNA-seq data have been used to understand cellular heterogeneity in disease-related samples, but their performance can be impacted by batch effect among datasets. Here, we present a DAISM-DNN protocol to achieve robust cell type proportion estimation on the target dataset. We describe the preparation of calibrated samples from human blood samples. We then detail steps to train a dataset-specific deep neural network (DNN) model and cell type proportion estimation using the trained model. For complete details on the use and execution of this protocol, please refer to Lin et al. (2022).
format Online
Article
Text
id pubmed-9356155
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-93561552022-08-07 Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD) Lin, Yating Wu, Shangze Xiao, Xu Zhao, Jingbo Wang, Minshu Li, Haojun Wang, Kejia Zhang, Minwei Zheng, Frank Yang, Wenxian Zhang, Lei Han, Jiahuai Yu, Rongshan STAR Protoc Protocol Computational protocols for cell type deconvolution from bulk RNA-seq data have been used to understand cellular heterogeneity in disease-related samples, but their performance can be impacted by batch effect among datasets. Here, we present a DAISM-DNN protocol to achieve robust cell type proportion estimation on the target dataset. We describe the preparation of calibrated samples from human blood samples. We then detail steps to train a dataset-specific deep neural network (DNN) model and cell type proportion estimation using the trained model. For complete details on the use and execution of this protocol, please refer to Lin et al. (2022). Elsevier 2022-07-31 /pmc/articles/PMC9356155/ /pubmed/35942344 http://dx.doi.org/10.1016/j.xpro.2022.101587 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Protocol
Lin, Yating
Wu, Shangze
Xiao, Xu
Zhao, Jingbo
Wang, Minshu
Li, Haojun
Wang, Kejia
Zhang, Minwei
Zheng, Frank
Yang, Wenxian
Zhang, Lei
Han, Jiahuai
Yu, Rongshan
Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD)
title Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD)
title_full Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD)
title_fullStr Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD)
title_full_unstemmed Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD)
title_short Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD)
title_sort protocol to estimate cell type proportions from bulk rna-seq using daism-dnn(xmbd)
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356155/
https://www.ncbi.nlm.nih.gov/pubmed/35942344
http://dx.doi.org/10.1016/j.xpro.2022.101587
work_keys_str_mv AT linyating protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd
AT wushangze protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd
AT xiaoxu protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd
AT zhaojingbo protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd
AT wangminshu protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd
AT lihaojun protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd
AT wangkejia protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd
AT zhangminwei protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd
AT zhengfrank protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd
AT yangwenxian protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd
AT zhanglei protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd
AT hanjiahuai protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd
AT yurongshan protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd