Cargando…
Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD)
Computational protocols for cell type deconvolution from bulk RNA-seq data have been used to understand cellular heterogeneity in disease-related samples, but their performance can be impacted by batch effect among datasets. Here, we present a DAISM-DNN protocol to achieve robust cell type proportio...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356155/ https://www.ncbi.nlm.nih.gov/pubmed/35942344 http://dx.doi.org/10.1016/j.xpro.2022.101587 |
_version_ | 1784763454015406080 |
---|---|
author | Lin, Yating Wu, Shangze Xiao, Xu Zhao, Jingbo Wang, Minshu Li, Haojun Wang, Kejia Zhang, Minwei Zheng, Frank Yang, Wenxian Zhang, Lei Han, Jiahuai Yu, Rongshan |
author_facet | Lin, Yating Wu, Shangze Xiao, Xu Zhao, Jingbo Wang, Minshu Li, Haojun Wang, Kejia Zhang, Minwei Zheng, Frank Yang, Wenxian Zhang, Lei Han, Jiahuai Yu, Rongshan |
author_sort | Lin, Yating |
collection | PubMed |
description | Computational protocols for cell type deconvolution from bulk RNA-seq data have been used to understand cellular heterogeneity in disease-related samples, but their performance can be impacted by batch effect among datasets. Here, we present a DAISM-DNN protocol to achieve robust cell type proportion estimation on the target dataset. We describe the preparation of calibrated samples from human blood samples. We then detail steps to train a dataset-specific deep neural network (DNN) model and cell type proportion estimation using the trained model. For complete details on the use and execution of this protocol, please refer to Lin et al. (2022). |
format | Online Article Text |
id | pubmed-9356155 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-93561552022-08-07 Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD) Lin, Yating Wu, Shangze Xiao, Xu Zhao, Jingbo Wang, Minshu Li, Haojun Wang, Kejia Zhang, Minwei Zheng, Frank Yang, Wenxian Zhang, Lei Han, Jiahuai Yu, Rongshan STAR Protoc Protocol Computational protocols for cell type deconvolution from bulk RNA-seq data have been used to understand cellular heterogeneity in disease-related samples, but their performance can be impacted by batch effect among datasets. Here, we present a DAISM-DNN protocol to achieve robust cell type proportion estimation on the target dataset. We describe the preparation of calibrated samples from human blood samples. We then detail steps to train a dataset-specific deep neural network (DNN) model and cell type proportion estimation using the trained model. For complete details on the use and execution of this protocol, please refer to Lin et al. (2022). Elsevier 2022-07-31 /pmc/articles/PMC9356155/ /pubmed/35942344 http://dx.doi.org/10.1016/j.xpro.2022.101587 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Protocol Lin, Yating Wu, Shangze Xiao, Xu Zhao, Jingbo Wang, Minshu Li, Haojun Wang, Kejia Zhang, Minwei Zheng, Frank Yang, Wenxian Zhang, Lei Han, Jiahuai Yu, Rongshan Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD) |
title | Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD) |
title_full | Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD) |
title_fullStr | Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD) |
title_full_unstemmed | Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD) |
title_short | Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD) |
title_sort | protocol to estimate cell type proportions from bulk rna-seq using daism-dnn(xmbd) |
topic | Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356155/ https://www.ncbi.nlm.nih.gov/pubmed/35942344 http://dx.doi.org/10.1016/j.xpro.2022.101587 |
work_keys_str_mv | AT linyating protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd AT wushangze protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd AT xiaoxu protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd AT zhaojingbo protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd AT wangminshu protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd AT lihaojun protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd AT wangkejia protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd AT zhangminwei protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd AT zhengfrank protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd AT yangwenxian protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd AT zhanglei protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd AT hanjiahuai protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd AT yurongshan protocoltoestimatecelltypeproportionsfrombulkrnasequsingdaismdnnxmbd |