Cargando…
Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN(XMBD)
Computational protocols for cell type deconvolution from bulk RNA-seq data have been used to understand cellular heterogeneity in disease-related samples, but their performance can be impacted by batch effect among datasets. Here, we present a DAISM-DNN protocol to achieve robust cell type proportio...
Autores principales: | Lin, Yating, Wu, Shangze, Xiao, Xu, Zhao, Jingbo, Wang, Minshu, Li, Haojun, Wang, Kejia, Zhang, Minwei, Zheng, Frank, Yang, Wenxian, Zhang, Lei, Han, Jiahuai, Yu, Rongshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356155/ https://www.ncbi.nlm.nih.gov/pubmed/35942344 http://dx.doi.org/10.1016/j.xpro.2022.101587 |
Ejemplares similares
-
DAISM-DNN(XMBD): Highly accurate cell type proportion estimation with in silico data augmentation and deep neural networks
por: Lin, Yating, et al.
Publicado: (2022) -
Dice-XMBD: Deep Learning-Based Cell Segmentation for Imaging Mass Cytometry
por: Xiao, Xu, et al.
Publicado: (2021) -
Deep representation features from DreamDIA(XMBD) improve the analysis of data-independent acquisition proteomics
por: Gao, Mingxuan, et al.
Publicado: (2021) -
Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics
por: He, Qingzu, et al.
Publicado: (2023) -
Centroid Optimization of DNN Classification in DOA Estimation for UAV
por: Wu, Long, et al.
Publicado: (2023)