Cargando…

Machine-learning improves understanding of glass formation in metallic systems

Glass-forming ability (GFA) in metallic systems remains a little-understood property. Experimental work on bulk metallic glasses (BMGs) is guided by many empirical criteria, which are often of limited predictive value. This work uses machine-learning both to produce predictive models for the GFA of...

Descripción completa

Detalles Bibliográficos
Autores principales: Forrest, Robert M., Greer, A. Lindsay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9358760/
https://www.ncbi.nlm.nih.gov/pubmed/36091413
http://dx.doi.org/10.1039/d2dd00026a