Cargando…
Machine-learning improves understanding of glass formation in metallic systems
Glass-forming ability (GFA) in metallic systems remains a little-understood property. Experimental work on bulk metallic glasses (BMGs) is guided by many empirical criteria, which are often of limited predictive value. This work uses machine-learning both to produce predictive models for the GFA of...
Autores principales: | Forrest, Robert M., Greer, A. Lindsay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9358760/ https://www.ncbi.nlm.nih.gov/pubmed/36091413 http://dx.doi.org/10.1039/d2dd00026a |
Ejemplares similares
-
Evolutionary design of machine-learning-predicted bulk metallic glasses
por: Forrest, Robert M., et al.
Publicado: (2023) -
Fe-based bulk metallic glasses: understanding the influence of impurities on glass formation
por: Stoica, Mihai
Publicado: (2017) -
Machine learning modeling for the prediction of plastic properties in metallic glasses
por: Amigo, Nicolás, et al.
Publicado: (2023) -
Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses
por: Ghorbani, Alireza, et al.
Publicado: (2022) -
In situ recrystallization of zero-dimensional hybrid metal halide glass-ceramics toward improved scintillation performance
por: Li, Bohan, et al.
Publicado: (2023)