Cargando…

Unsupervised detection of fragment length signatures of circulating tumor DNA using non-negative matrix factorization

Sequencing of cell-free DNA (cfDNA) is currently being used to detect cancer by searching both for mutational and non-mutational alterations. Recent work has shown that the length distribution of cfDNA fragments from a cancer patient can inform tumor load and type. Here, we propose non-negative matr...

Descripción completa

Detalles Bibliográficos
Autores principales: Renaud, Gabriel, Nørgaard, Maibritt, Lindberg, Johan, Grönberg, Henrik, De Laere, Bram, Jensen, Jørgen Bjerggaard, Borre, Michael, Andersen, Claus Lindbjerg, Sørensen, Karina Dalsgaard, Maretty, Lasse, Besenbacher, Søren
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9363120/
https://www.ncbi.nlm.nih.gov/pubmed/35894300
http://dx.doi.org/10.7554/eLife.71569
_version_ 1784764858176110592
author Renaud, Gabriel
Nørgaard, Maibritt
Lindberg, Johan
Grönberg, Henrik
De Laere, Bram
Jensen, Jørgen Bjerggaard
Borre, Michael
Andersen, Claus Lindbjerg
Sørensen, Karina Dalsgaard
Maretty, Lasse
Besenbacher, Søren
author_facet Renaud, Gabriel
Nørgaard, Maibritt
Lindberg, Johan
Grönberg, Henrik
De Laere, Bram
Jensen, Jørgen Bjerggaard
Borre, Michael
Andersen, Claus Lindbjerg
Sørensen, Karina Dalsgaard
Maretty, Lasse
Besenbacher, Søren
author_sort Renaud, Gabriel
collection PubMed
description Sequencing of cell-free DNA (cfDNA) is currently being used to detect cancer by searching both for mutational and non-mutational alterations. Recent work has shown that the length distribution of cfDNA fragments from a cancer patient can inform tumor load and type. Here, we propose non-negative matrix factorization (NMF) of fragment length distributions as a novel and completely unsupervised method for studying fragment length patterns in cfDNA. Using shallow whole-genome sequencing (sWGS) of cfDNA from a cohort of patients with metastatic castration-resistant prostate cancer (mCRPC), we demonstrate how NMF accurately infers the true tumor fragment length distribution as an NMF component - and that the sample weights of this component correlate with ctDNA levels (r=0.75). We further demonstrate how using several NMF components enables accurate cancer detection on data from various early stage cancers (AUC = 0.96). Finally, we show that NMF, when applied across genomic regions, can be used to discover fragment length signatures associated with open chromatin.
format Online
Article
Text
id pubmed-9363120
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-93631202022-08-10 Unsupervised detection of fragment length signatures of circulating tumor DNA using non-negative matrix factorization Renaud, Gabriel Nørgaard, Maibritt Lindberg, Johan Grönberg, Henrik De Laere, Bram Jensen, Jørgen Bjerggaard Borre, Michael Andersen, Claus Lindbjerg Sørensen, Karina Dalsgaard Maretty, Lasse Besenbacher, Søren eLife Cancer Biology Sequencing of cell-free DNA (cfDNA) is currently being used to detect cancer by searching both for mutational and non-mutational alterations. Recent work has shown that the length distribution of cfDNA fragments from a cancer patient can inform tumor load and type. Here, we propose non-negative matrix factorization (NMF) of fragment length distributions as a novel and completely unsupervised method for studying fragment length patterns in cfDNA. Using shallow whole-genome sequencing (sWGS) of cfDNA from a cohort of patients with metastatic castration-resistant prostate cancer (mCRPC), we demonstrate how NMF accurately infers the true tumor fragment length distribution as an NMF component - and that the sample weights of this component correlate with ctDNA levels (r=0.75). We further demonstrate how using several NMF components enables accurate cancer detection on data from various early stage cancers (AUC = 0.96). Finally, we show that NMF, when applied across genomic regions, can be used to discover fragment length signatures associated with open chromatin. eLife Sciences Publications, Ltd 2022-07-27 /pmc/articles/PMC9363120/ /pubmed/35894300 http://dx.doi.org/10.7554/eLife.71569 Text en © 2022, Renaud et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Cancer Biology
Renaud, Gabriel
Nørgaard, Maibritt
Lindberg, Johan
Grönberg, Henrik
De Laere, Bram
Jensen, Jørgen Bjerggaard
Borre, Michael
Andersen, Claus Lindbjerg
Sørensen, Karina Dalsgaard
Maretty, Lasse
Besenbacher, Søren
Unsupervised detection of fragment length signatures of circulating tumor DNA using non-negative matrix factorization
title Unsupervised detection of fragment length signatures of circulating tumor DNA using non-negative matrix factorization
title_full Unsupervised detection of fragment length signatures of circulating tumor DNA using non-negative matrix factorization
title_fullStr Unsupervised detection of fragment length signatures of circulating tumor DNA using non-negative matrix factorization
title_full_unstemmed Unsupervised detection of fragment length signatures of circulating tumor DNA using non-negative matrix factorization
title_short Unsupervised detection of fragment length signatures of circulating tumor DNA using non-negative matrix factorization
title_sort unsupervised detection of fragment length signatures of circulating tumor dna using non-negative matrix factorization
topic Cancer Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9363120/
https://www.ncbi.nlm.nih.gov/pubmed/35894300
http://dx.doi.org/10.7554/eLife.71569
work_keys_str_mv AT renaudgabriel unsuperviseddetectionoffragmentlengthsignaturesofcirculatingtumordnausingnonnegativematrixfactorization
AT nørgaardmaibritt unsuperviseddetectionoffragmentlengthsignaturesofcirculatingtumordnausingnonnegativematrixfactorization
AT lindbergjohan unsuperviseddetectionoffragmentlengthsignaturesofcirculatingtumordnausingnonnegativematrixfactorization
AT gronberghenrik unsuperviseddetectionoffragmentlengthsignaturesofcirculatingtumordnausingnonnegativematrixfactorization
AT delaerebram unsuperviseddetectionoffragmentlengthsignaturesofcirculatingtumordnausingnonnegativematrixfactorization
AT jensenjørgenbjerggaard unsuperviseddetectionoffragmentlengthsignaturesofcirculatingtumordnausingnonnegativematrixfactorization
AT borremichael unsuperviseddetectionoffragmentlengthsignaturesofcirculatingtumordnausingnonnegativematrixfactorization
AT andersenclauslindbjerg unsuperviseddetectionoffragmentlengthsignaturesofcirculatingtumordnausingnonnegativematrixfactorization
AT sørensenkarinadalsgaard unsuperviseddetectionoffragmentlengthsignaturesofcirculatingtumordnausingnonnegativematrixfactorization
AT marettylasse unsuperviseddetectionoffragmentlengthsignaturesofcirculatingtumordnausingnonnegativematrixfactorization
AT besenbachersøren unsuperviseddetectionoffragmentlengthsignaturesofcirculatingtumordnausingnonnegativematrixfactorization