Cargando…
Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer’s disease
Alzheimer’s disease (AD) risk increases exponentially with age and is associated with multiple molecular hallmarks of aging, one of which is epigenetic alterations. Epigenetic age predictors based on 5’ cytosine methylation (DNAm), or epigenetic clocks, have previously suggested that epigenetic age...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9365556/ https://www.ncbi.nlm.nih.gov/pubmed/35907208 http://dx.doi.org/10.18632/aging.204196 |
_version_ | 1784765364265025536 |
---|---|
author | Thrush, Kyra L. Bennett, David A. Gaiteri, Christopher Horvath, Steve van Dyck, Christopher H. Higgins-Chen, Albert T. Levine, Morgan E. |
author_facet | Thrush, Kyra L. Bennett, David A. Gaiteri, Christopher Horvath, Steve van Dyck, Christopher H. Higgins-Chen, Albert T. Levine, Morgan E. |
author_sort | Thrush, Kyra L. |
collection | PubMed |
description | Alzheimer’s disease (AD) risk increases exponentially with age and is associated with multiple molecular hallmarks of aging, one of which is epigenetic alterations. Epigenetic age predictors based on 5’ cytosine methylation (DNAm), or epigenetic clocks, have previously suggested that epigenetic age acceleration may occur in AD brain tissue. Epigenetic clocks are promising tools for the quantification of biological aging, yet we hypothesize that investigation of brain aging in AD will be assisted by the development of brain-specific epigenetic clocks. Therefore, we generated a novel age predictor termed PCBrainAge that was trained solely in cortical samples. This predictor utilizes a combination of principal components analysis and regularized regression, which reduces technical noise and greatly improves test-retest reliability. To characterize the scope of PCBrainAge’s utility, we generated DNAm data from multiple brain regions in a sample from the Religious Orders Study and Rush Memory and Aging Project. PCBrainAge captures meaningful heterogeneity of aging: Its acceleration demonstrates stronger associations with clinical AD dementia, pathologic AD, and APOE ε4 carrier status compared to extant epigenetic age predictors. It further does so across multiple cortical and subcortical regions. Overall, PCBrainAge’s increased reliability and specificity makes it a particularly promising tool for investigating heterogeneity in brain aging, as well as epigenetic alterations underlying AD risk and resilience. |
format | Online Article Text |
id | pubmed-9365556 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Impact Journals |
record_format | MEDLINE/PubMed |
spelling | pubmed-93655562022-08-11 Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer’s disease Thrush, Kyra L. Bennett, David A. Gaiteri, Christopher Horvath, Steve van Dyck, Christopher H. Higgins-Chen, Albert T. Levine, Morgan E. Aging (Albany NY) Research Paper Alzheimer’s disease (AD) risk increases exponentially with age and is associated with multiple molecular hallmarks of aging, one of which is epigenetic alterations. Epigenetic age predictors based on 5’ cytosine methylation (DNAm), or epigenetic clocks, have previously suggested that epigenetic age acceleration may occur in AD brain tissue. Epigenetic clocks are promising tools for the quantification of biological aging, yet we hypothesize that investigation of brain aging in AD will be assisted by the development of brain-specific epigenetic clocks. Therefore, we generated a novel age predictor termed PCBrainAge that was trained solely in cortical samples. This predictor utilizes a combination of principal components analysis and regularized regression, which reduces technical noise and greatly improves test-retest reliability. To characterize the scope of PCBrainAge’s utility, we generated DNAm data from multiple brain regions in a sample from the Religious Orders Study and Rush Memory and Aging Project. PCBrainAge captures meaningful heterogeneity of aging: Its acceleration demonstrates stronger associations with clinical AD dementia, pathologic AD, and APOE ε4 carrier status compared to extant epigenetic age predictors. It further does so across multiple cortical and subcortical regions. Overall, PCBrainAge’s increased reliability and specificity makes it a particularly promising tool for investigating heterogeneity in brain aging, as well as epigenetic alterations underlying AD risk and resilience. Impact Journals 2022-07-30 /pmc/articles/PMC9365556/ /pubmed/35907208 http://dx.doi.org/10.18632/aging.204196 Text en Copyright: © 2022 Thrush et al. https://creativecommons.org/licenses/by/3.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Thrush, Kyra L. Bennett, David A. Gaiteri, Christopher Horvath, Steve van Dyck, Christopher H. Higgins-Chen, Albert T. Levine, Morgan E. Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer’s disease |
title | Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer’s disease |
title_full | Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer’s disease |
title_fullStr | Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer’s disease |
title_full_unstemmed | Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer’s disease |
title_short | Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer’s disease |
title_sort | aging the brain: multi-region methylation principal component based clock in the context of alzheimer’s disease |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9365556/ https://www.ncbi.nlm.nih.gov/pubmed/35907208 http://dx.doi.org/10.18632/aging.204196 |
work_keys_str_mv | AT thrushkyral agingthebrainmultiregionmethylationprincipalcomponentbasedclockinthecontextofalzheimersdisease AT bennettdavida agingthebrainmultiregionmethylationprincipalcomponentbasedclockinthecontextofalzheimersdisease AT gaiterichristopher agingthebrainmultiregionmethylationprincipalcomponentbasedclockinthecontextofalzheimersdisease AT horvathsteve agingthebrainmultiregionmethylationprincipalcomponentbasedclockinthecontextofalzheimersdisease AT vandyckchristopherh agingthebrainmultiregionmethylationprincipalcomponentbasedclockinthecontextofalzheimersdisease AT higginschenalbertt agingthebrainmultiregionmethylationprincipalcomponentbasedclockinthecontextofalzheimersdisease AT levinemorgane agingthebrainmultiregionmethylationprincipalcomponentbasedclockinthecontextofalzheimersdisease |