Cargando…
Regulation of APD and Force by the Na(+)/Ca(2+) Exchanger in Human-Induced Pluripotent Stem Cell-Derived Engineered Heart Tissue
The physiological importance of NCX in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is not well characterized but may depend on the relative strength of the current, compared to adult cardiomyocytes, and on the exact spatial arrangement of proteins involved in Ca(2+) extrus...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368200/ https://www.ncbi.nlm.nih.gov/pubmed/35954268 http://dx.doi.org/10.3390/cells11152424 |
Sumario: | The physiological importance of NCX in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is not well characterized but may depend on the relative strength of the current, compared to adult cardiomyocytes, and on the exact spatial arrangement of proteins involved in Ca(2+) extrusion. Here, we determined NCX currents and its contribution to action potential and force in hiPSC-CMs cultured in engineered heart tissue (EHT). The results were compared with data from rat and human left ventricular tissue. The NCX currents in hiPSC-CMs were larger than in ventricular cardiomyocytes isolated from human left ventricles (1.3 ± 0.2 pA/pF and 3.2 ± 0.2 pA/pF for human ventricle and EHT, respectively, p < 0.05). SEA0400 (10 µM) markedly shortened the APD(90) in EHT (by 26.6 ± 5%, p < 0.05) and, to a lesser extent, in rat ventricular tissue (by 10.7 ± 1.6%, p < 0.05). Shortening in human left ventricular preparations was small and not different from time-matched controls (TMCs; p > 0.05). Force was increased by the NCX block in rat ventricle (by 31 ± 5.4%, p < 0.05) and EHT (by 20.8 ± 3.9%, p < 0.05), but not in human left ventricular preparations. In conclusion, hiPSC-CMs possess NCX currents not smaller than human left ventricular tissue. Robust NCX block-induced APD shortening and inotropy makes EHT an attractive pharmacological model. |
---|