Cargando…

Impact of Freeze- and Spray-Drying Microencapsulation Techniques on β-Glucan Powder Biological Activity: A Comparative Study

The study compares the impact of freeze- and spray-drying (FD, SD) microencapsulation methods on the content of β-glucan, total polyphenols (TP), total flavonoids (TF), phenolic acids (PA), and antioxidant activity (AA) in commercially β-glucan powder (Pleurotus ostreatus) using maltodextrin as a ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Valková, Veronika, Ďúranová, Hana, Falcimaigne-Cordin, Aude, Rossi, Claire, Nadaud, Frédéric, Nesterenko, Alla, Moncada, Marvin, Orel, Mykola, Ivanišová, Eva, Chlebová, Zuzana, Gabríny, Lucia, Kačániová, Miroslava
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368466/
https://www.ncbi.nlm.nih.gov/pubmed/35954036
http://dx.doi.org/10.3390/foods11152267
_version_ 1784766141156032512
author Valková, Veronika
Ďúranová, Hana
Falcimaigne-Cordin, Aude
Rossi, Claire
Nadaud, Frédéric
Nesterenko, Alla
Moncada, Marvin
Orel, Mykola
Ivanišová, Eva
Chlebová, Zuzana
Gabríny, Lucia
Kačániová, Miroslava
author_facet Valková, Veronika
Ďúranová, Hana
Falcimaigne-Cordin, Aude
Rossi, Claire
Nadaud, Frédéric
Nesterenko, Alla
Moncada, Marvin
Orel, Mykola
Ivanišová, Eva
Chlebová, Zuzana
Gabríny, Lucia
Kačániová, Miroslava
author_sort Valková, Veronika
collection PubMed
description The study compares the impact of freeze- and spray-drying (FD, SD) microencapsulation methods on the content of β-glucan, total polyphenols (TP), total flavonoids (TF), phenolic acids (PA), and antioxidant activity (AA) in commercially β-glucan powder (Pleurotus ostreatus) using maltodextrin as a carrier. Morphology (scanning electron microscopy- SEM), yield, moisture content (MC), and water activity (a(w)) were also evaluated in the samples. Our examinations revealed significant structural differences between powders microencapsulated by the drying methods. As compared to non-encapsulated powder, the SD powder with yield of 44.38 ± 0.55% exhibited more reduced (p < 0.05) values for a(w) (0.456 ± 0.001) and MC (8.90 ± 0.44%) than the FD one (yield: 27.97 ± 0.33%; a(w): 0.506 ± 0.002; MC: 11.30 ± 0.28%). In addition, the highest values for β-glucan content (72.39 ± 0.38%), TPC (3.40 ± 0.17 mg GAE/g), and TFC (3.07 ± 0.29 mg QE/g) have been detected in the SD powder. Our results allow for the conclusion that the SD microencapsulation method using maltodextrin seems to be more powerful in terms of the β-glucan powder yield and its contents of β-glucan, TP, and TF as compared to the FD technique.
format Online
Article
Text
id pubmed-9368466
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-93684662022-08-12 Impact of Freeze- and Spray-Drying Microencapsulation Techniques on β-Glucan Powder Biological Activity: A Comparative Study Valková, Veronika Ďúranová, Hana Falcimaigne-Cordin, Aude Rossi, Claire Nadaud, Frédéric Nesterenko, Alla Moncada, Marvin Orel, Mykola Ivanišová, Eva Chlebová, Zuzana Gabríny, Lucia Kačániová, Miroslava Foods Article The study compares the impact of freeze- and spray-drying (FD, SD) microencapsulation methods on the content of β-glucan, total polyphenols (TP), total flavonoids (TF), phenolic acids (PA), and antioxidant activity (AA) in commercially β-glucan powder (Pleurotus ostreatus) using maltodextrin as a carrier. Morphology (scanning electron microscopy- SEM), yield, moisture content (MC), and water activity (a(w)) were also evaluated in the samples. Our examinations revealed significant structural differences between powders microencapsulated by the drying methods. As compared to non-encapsulated powder, the SD powder with yield of 44.38 ± 0.55% exhibited more reduced (p < 0.05) values for a(w) (0.456 ± 0.001) and MC (8.90 ± 0.44%) than the FD one (yield: 27.97 ± 0.33%; a(w): 0.506 ± 0.002; MC: 11.30 ± 0.28%). In addition, the highest values for β-glucan content (72.39 ± 0.38%), TPC (3.40 ± 0.17 mg GAE/g), and TFC (3.07 ± 0.29 mg QE/g) have been detected in the SD powder. Our results allow for the conclusion that the SD microencapsulation method using maltodextrin seems to be more powerful in terms of the β-glucan powder yield and its contents of β-glucan, TP, and TF as compared to the FD technique. MDPI 2022-07-29 /pmc/articles/PMC9368466/ /pubmed/35954036 http://dx.doi.org/10.3390/foods11152267 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Valková, Veronika
Ďúranová, Hana
Falcimaigne-Cordin, Aude
Rossi, Claire
Nadaud, Frédéric
Nesterenko, Alla
Moncada, Marvin
Orel, Mykola
Ivanišová, Eva
Chlebová, Zuzana
Gabríny, Lucia
Kačániová, Miroslava
Impact of Freeze- and Spray-Drying Microencapsulation Techniques on β-Glucan Powder Biological Activity: A Comparative Study
title Impact of Freeze- and Spray-Drying Microencapsulation Techniques on β-Glucan Powder Biological Activity: A Comparative Study
title_full Impact of Freeze- and Spray-Drying Microencapsulation Techniques on β-Glucan Powder Biological Activity: A Comparative Study
title_fullStr Impact of Freeze- and Spray-Drying Microencapsulation Techniques on β-Glucan Powder Biological Activity: A Comparative Study
title_full_unstemmed Impact of Freeze- and Spray-Drying Microencapsulation Techniques on β-Glucan Powder Biological Activity: A Comparative Study
title_short Impact of Freeze- and Spray-Drying Microencapsulation Techniques on β-Glucan Powder Biological Activity: A Comparative Study
title_sort impact of freeze- and spray-drying microencapsulation techniques on β-glucan powder biological activity: a comparative study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368466/
https://www.ncbi.nlm.nih.gov/pubmed/35954036
http://dx.doi.org/10.3390/foods11152267
work_keys_str_mv AT valkovaveronika impactoffreezeandspraydryingmicroencapsulationtechniquesonbglucanpowderbiologicalactivityacomparativestudy
AT duranovahana impactoffreezeandspraydryingmicroencapsulationtechniquesonbglucanpowderbiologicalactivityacomparativestudy
AT falcimaignecordinaude impactoffreezeandspraydryingmicroencapsulationtechniquesonbglucanpowderbiologicalactivityacomparativestudy
AT rossiclaire impactoffreezeandspraydryingmicroencapsulationtechniquesonbglucanpowderbiologicalactivityacomparativestudy
AT nadaudfrederic impactoffreezeandspraydryingmicroencapsulationtechniquesonbglucanpowderbiologicalactivityacomparativestudy
AT nesterenkoalla impactoffreezeandspraydryingmicroencapsulationtechniquesonbglucanpowderbiologicalactivityacomparativestudy
AT moncadamarvin impactoffreezeandspraydryingmicroencapsulationtechniquesonbglucanpowderbiologicalactivityacomparativestudy
AT orelmykola impactoffreezeandspraydryingmicroencapsulationtechniquesonbglucanpowderbiologicalactivityacomparativestudy
AT ivanisovaeva impactoffreezeandspraydryingmicroencapsulationtechniquesonbglucanpowderbiologicalactivityacomparativestudy
AT chlebovazuzana impactoffreezeandspraydryingmicroencapsulationtechniquesonbglucanpowderbiologicalactivityacomparativestudy
AT gabrinylucia impactoffreezeandspraydryingmicroencapsulationtechniquesonbglucanpowderbiologicalactivityacomparativestudy
AT kacaniovamiroslava impactoffreezeandspraydryingmicroencapsulationtechniquesonbglucanpowderbiologicalactivityacomparativestudy