Cargando…
A Fast and Interpretable Deep Learning Approach for Accurate Electrostatics-Driven pK(a) Predictions in Proteins
[Image: see text] Existing computational methods for estimating pK(a) values in proteins rely on theoretical approximations and lengthy computations. In this work, we use a data set of 6 million theoretically determined pK(a) shifts to train deep learning models, which are shown to rival the physics...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369009/ https://www.ncbi.nlm.nih.gov/pubmed/35837736 http://dx.doi.org/10.1021/acs.jctc.2c00308 |