Cargando…
A Fast and Interpretable Deep Learning Approach for Accurate Electrostatics-Driven pK(a) Predictions in Proteins
[Image: see text] Existing computational methods for estimating pK(a) values in proteins rely on theoretical approximations and lengthy computations. In this work, we use a data set of 6 million theoretically determined pK(a) shifts to train deep learning models, which are shown to rival the physics...
Autores principales: | Reis, Pedro B.P.S., Bertolini, Marco, Montanari, Floriane, Rocchia, Walter, Machuqueiro, Miguel, Clevert, Djork-Arné |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369009/ https://www.ncbi.nlm.nih.gov/pubmed/35837736 http://dx.doi.org/10.1021/acs.jctc.2c00308 |
Ejemplares similares
-
Img2Mol – accurate SMILES recognition from molecular graphical depictions
por: Clevert, Djork-Arné, et al.
Publicado: (2021) -
Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations
por: Winter, Robin, et al.
Publicado: (2018) -
Modeling Physico-Chemical ADMET Endpoints with Multitask Graph Convolutional Networks
por: Montanari, Floriane, et al.
Publicado: (2019) -
Efficient multi-objective molecular optimization in a continuous latent space
por: Winter, Robin, et al.
Publicado: (2019) -
Accurate pK(a) Calculations
in Proteins with Reactive Molecular Dynamics Provide Physical Insight
Into the Electrostatic Origins of Their Values
por: Zuchniarz, Joshua, et al.
Publicado: (2022)