Cargando…
ST-CRMF: Compensated Residual Matrix Factorization with Spatial-Temporal Regularization for Graph-Based Time Series Forecasting
Despite the extensive efforts, accurate traffic time series forecasting remains challenging. By taking into account the non-linear nature of traffic in-depth, we propose a novel ST-CRMF model consisting of the Compensated Residual Matrix Factorization with Spatial-Temporal regularization for graph-b...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371056/ https://www.ncbi.nlm.nih.gov/pubmed/35957433 http://dx.doi.org/10.3390/s22155877 |