Cargando…
ST-CRMF: Compensated Residual Matrix Factorization with Spatial-Temporal Regularization for Graph-Based Time Series Forecasting
Despite the extensive efforts, accurate traffic time series forecasting remains challenging. By taking into account the non-linear nature of traffic in-depth, we propose a novel ST-CRMF model consisting of the Compensated Residual Matrix Factorization with Spatial-Temporal regularization for graph-b...
Autores principales: | Li, Jinlong, Wu, Pan, Li, Ruonan, Pian, Yuzhuang, Huang, Zilin, Xu, Lunhui, Li, Xiaochen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371056/ https://www.ncbi.nlm.nih.gov/pubmed/35957433 http://dx.doi.org/10.3390/s22155877 |
Ejemplares similares
-
Predicting lncRNA–Protein Interaction With Weighted Graph-Regularized Matrix Factorization
por: Sun, Xibo, et al.
Publicado: (2021) -
Human Microbe-Disease Association Prediction With Graph Regularized Non-Negative Matrix Factorization
por: He, Bin-Sheng, et al.
Publicado: (2018) -
Distance-regular graphs
por: Brouwer, Andries E, et al.
Publicado: (1989) -
Anticancer Drug Response Prediction in Cell Lines Using Weighted Graph Regularized Matrix Factorization
por: Guan, Na-Na, et al.
Publicado: (2019) -
Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization
por: Guan, Naiyang, et al.
Publicado: (2013)