Cargando…
An insight into the iPSCs-derived two-dimensional culture and three-dimensional organoid models for neurodegenerative disorders
The use of induced pluripotent stem cells (iPSCs) is a promising approach when used as models to study neurodegenerative disorders (NDDs) in vitro. iPSCs have been used in in vitro two-dimensional cultures; however, these two-dimensional cultures do not mimic the physiological three-dimensional cell...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372641/ https://www.ncbi.nlm.nih.gov/pubmed/35992771 http://dx.doi.org/10.1098/rsfs.2022.0040 |
Sumario: | The use of induced pluripotent stem cells (iPSCs) is a promising approach when used as models to study neurodegenerative disorders (NDDs) in vitro. iPSCs have been used in in vitro two-dimensional cultures; however, these two-dimensional cultures do not mimic the physiological three-dimensional cellular environment. The use of iPSCs-derived three-dimensional organoids has risen as a powerful alternative to using animal models to study NDDs. These iPSCs-derived three-dimensional organoids can resemble the complexity of the tissue of interest, making it an approachable, cost-effective technique, to study NDDs in an ethical manner. Furthermore, the use of iPSCs-derived organoids will be an important tool to develop new therapeutics and pharmaceutics to treat NDDs. Herein, we will highlight how iPSCs-derived two-dimensional cultures and three-dimensional organoids have been used to study NDDs, as well as the advantages and disadvantages of both techniques. |
---|