Cargando…

Deep-Learning-Guided Student Classroom Action Understanding for Preschool Education

A deep architecture for enhancing students' action recognition is proposed to improve preschool education. This paper seamlessly combines the teaching objectives, teaching scope, teaching implementation, and breeding evaluation status of preschool breeding practice theory. We attempt to solve t...

Descripción completa

Detalles Bibliográficos
Autor principal: Li, Xiaoli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377971/
https://www.ncbi.nlm.nih.gov/pubmed/35979240
http://dx.doi.org/10.1155/2022/9416467
Descripción
Sumario:A deep architecture for enhancing students' action recognition is proposed to improve preschool education. This paper seamlessly combines the teaching objectives, teaching scope, teaching implementation, and breeding evaluation status of preschool breeding practice theory. We attempt to solve the problem of effective preschool teaching, based on which we propose the simple adaptation strategies. We further evaluate the practice of preschool breeding and its effectiveness. In this way, civilized and high-quality preschool talents will be cultivated, and preschool educational experiences will be promoted. In the method of promoting the preschool culture of weak-aged children, owing to the problem that the traditional action recognition algorithm can indicate the specific students' actions, an action recognition method based on the combination of deep integration and human skeleton representation is proposed. First, the connected spatial locations and constraints are fed into a long-short-specified recall (LSTM) mode with a spatially and temporally aware algorithm which is designed to obtain spatiotemporal feature and highly separable deep joint features. Afterward, a new mechanism is introduced to resolve keyframes as well as the joints. Finally, based on the two-stream deep architecture, the effective discrimination of similar actions is achieved by integrating the color and shape features into the skeleton features by designing the deep model. Extensive experiments have demonstrated that, compared with the mainstream algorithms, this method can effectively distinguish students' action types in the classroom of homogeneous preschool children. Thus, we can substantially improve the efficiency of preschool teaching.